Betriebsanleitung

Druckmittler CSB

für VEGADIF 85

Document ID: 54850

Inhaltsverzeichnis

1	Zu die	esem Dokument	3
	1.1	Funktion	
	1.2	Zielgruppe	
	1.3	Verwendete Symbolik	3
2	Zu Ihi	rer Sicherheit	4
	2.1	Autorisiertes Personal	4
	2.2	Bestimmungsgemäße Verwendung	4
	2.3	Warnung vor Fehlgebrauch	
	2.4	Allgemeine Sicherheitshinweise	4
3	Produ	uktbeschreibung	5
	3.1	Aufbau	5
	3.2	Arbeitsweise	5
	3.3	Verpackung, Transport und Lagerung	5
4	Planu	ıngshinweise für Druckmittlersysteme	7
	4.1	Einfluss der Komponenten	
	4.2	Einfluss von Temperaturänderungen	
	4.3	Dynamisches Verhalten der Druckmittler 1	2
	4.4	Montageposition	
	4.5	Auswahl des Messbereichs	
	4.6	Berechnung des Temperaturfehlers	7
5	Monti	ieren1	9
	5.1	Einsatzbedingungen	9
	5.2	Sauerstoffanwendungen	
	5.3	Hinweise zur Handhabung	
	5.4	Montagehinweise	20
6	Instai	ndhalten und Störungen beseitigen2	1
	6.1	Instandhalten	21
7	Anha	ng	22
	7.1	Technische Daten	
	7.2	Druckmittler bei Vakuumanwendungen	
	7.3	Maße und Gewichte	
	7.4	Gewerbliche Schutzrechte	35
	7 -	We are all alone	

1 Zu diesem Dokument

1.1 Funktion

Die vorliegende Anleitung liefert Ihnen die erforderlichen Informationen für Montage, Anschluss und Inbetriebnahme sowie wichtige Hinweise für Wartung, Störungsbeseitigung, Sicherheit und den Austausch von Teilen. Lesen Sie diese deshalb vor der Inbetriebnahme und bewahren Sie sie als Produktbestandteil in unmittelbarer Nähe des Gerätes jederzeit zugänglich auf.

1.2 Zielgruppe

Diese Anleitung richtet sich an ausgebildetes Fachpersonal. Der Inhalt dieser Anleitung muss dem Fachpersonal zugänglich gemacht und umgesetzt werden.

1.3 Verwendete Symbolik

Document ID

Dieses Symbol auf der Titelseite dieser Anleitung weist auf die Document ID hin. Durch Eingabe der Document ID auf www.vega.com kommen Sie zum Dokumenten-Download.

Information, Hinweis, Tipp: Dieses Symbol kennzeichnet hilfreiche Zusatzinformationen und Tipps für erfolgreiches Arbeiten.

Hinweis: Dieses Symbol kennzeichnet Hinweise zur Vermeidung von Störungen, Fehlfunktionen, Geräte- oder Anlagenschäden.

Vorsicht: Nichtbeachten der mit diesem Symbol gekennzeichneten Informationen kann einen Personenschaden zur Folge haben.

Warnung: Nichtbeachten der mit diesem Symbol gekennzeichneten Informationen kann einen ernsthaften oder tödlichen Personenschaden zur Folge haben.

Gefahr: Nichtbeachten der mit diesem Symbol gekennzeichneten Informationen wird einen ernsthaften oder tödlichen Personenschaden zur Folge haben.

Ex-Anwendungen

Dieses Symbol kennzeichnet besondere Hinweise für Ex-Anwendungen.

Liste

Der vorangestellte Punkt kennzeichnet eine Liste ohne zwingende Reihenfolge.

1 Handlungsfolge

Vorangestellte Zahlen kennzeichnen aufeinander folgende Handlungsschritte.

Entsorgung

Dieses Symbol kennzeichnet besondere Hinweise zur Entsorgung.

2 Zu Ihrer Sicherheit

2.1 Autorisiertes Personal

Sämtliche in dieser Dokumentation beschriebenen Handhabungen dürfen nur durch ausgebildetes und autorisiertes Fachpersonal durchgeführt werden.

Bei Arbeiten am und mit dem Gerät ist immer die erforderliche persönliche Schutzausrüstung zu tragen.

2.2 Bestimmungsgemäße Verwendung

Der Druckmittler ist ein funktionaler Bestandteil des Differenzdruckmessumformers VEGADIE 85.

Detaillierte Angaben zum Anwendungsbereich finden Sie in Kapitel "*Produktbeschreibung*".

Die Betriebssicherheit des Gerätes ist nur bei bestimmungsgemäßer Verwendung entsprechend den Angaben in der Betriebsanleitung sowie in den evtl. ergänzenden Anleitungen gegeben.

2.3 Warnung vor Fehlgebrauch

Bei nicht sachgerechter oder nicht bestimmungsgemäßer Verwendung können von diesem Gerät anwendungsspezifische Gefahren ausgehen, so z. B. ein Überlauf des Behälters oder Schäden an Anlagenteilen durch falsche Montage oder Einstellung.

2.4 Allgemeine Sicherheitshinweise

Es sind die Sicherheitshinweise in der Betriebsanleitung des jeweiligen Gerätes zu beachten.

3 Produktbeschreibung

3.1 Aufbau

Lieferumfang

Der Lieferumfang besteht aus:

- Druckmittler montiert an VEGADIF 85
- Dokumentation
 - Dieser Betriebsanleitung

Komponenten

Der Druckmittler CSB besteht aus den Komponenten Trennmembran, Prozessanschluss sowie Temperaturentkoppler. Die Komponenten sind voll mit dem zugehörigen Differenzdruckmessumformer verschweißt und stellen ein hermetisch dichtes System dar.

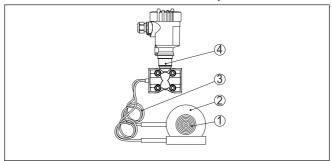


Abb. 1: VEGADIF 85 mit Druckmittler CSB

- 1 Trennmembran
- 2 Prozessanschluss
- 3 Temperaturentkoppler
- 4 VEGADIF 85

3.2 Arbeitsweise

Anwendungsbereich

Druckmittler werden eingesetzt, wenn eine Trennung zwischen Medium und Druckmessumformer erforderlich ist, besonders bei:

- Hohen Mediumtemperaturen
- Korrosiven Medien
- Starken Vibrationen an der Messstelle

Funktionsprinzip

Der Prozessdruck wirkt auf die Trennmembrane. Diese überträgt den Prozessdruck über die Kapillarleitung mit einer Druckübertragungsflüssigkeit auf das Sensorelement des Differenzdruckmessumformers.

3.3 Verpackung, Transport und Lagerung

Verpackung

Ihr Gerät wurde auf dem Weg zum Einsatzort durch eine Verpackung geschützt. Dabei sind die üblichen Transportbeanspruchungen durch eine Prüfung in Anlehnung an ISO 4180 abgesichert.

Bei Standardgeräten besteht die Verpackung aus Karton, ist umweltverträglich und wieder verwertbar. Bei Sonderausführungen wird

zusätzlich PE-Schaum oder PE-Folie verwendet. Entsorgen Sie das anfallende Verpackungsmaterial über spezialisierte Recyclingbetriebe.

Vorsicht:

Geräte für Sauerstoffanwendungen sind in PE-Folie eingeschweißt und mit einem Aufkleber "Oxygene! Use no Oil" versehen. Diese Folie darf erst unmittelbar vor der Montage des Gerätes entfernt werden! Siehe Hinweis unter "Montieren".

Transport

Der Transport muss unter Berücksichtigung der Hinweise auf der Transportverpackung erfolgen. Nichtbeachtung kann Schäden am Gerät zur Folge haben.

Transportinspektion

Die Lieferung ist bei Erhalt unverzüglich auf Vollständigkeit und eventuelle Transportschäden zu untersuchen. Festgestellte Transportschäden oder verdeckte Mängel sind entsprechend zu behandeln.

Lagerung

Die Packstücke sind bis zur Montage verschlossen und unter Beachtung der außen angebrachten Aufstell- und Lagermarkierungen aufzubewahren.

Packstücke, sofern nicht anders angegeben, nur unter folgenden Bedingungen lagern:

- Nicht im Freien aufbewahren
- Trocken und staubfrei lagern
- Keinen aggressiven Medien aussetzen
- Vor Sonneneinstrahlung schützen
- Mechanische Erschütterungen vermeiden

Lager- und Transporttemperatur

- Lager- und Transporttemperatur siehe Kapitel "Anhang Technische Daten Umgebungsbedingungen"
- Relative Luftfeuchte 20 ... 85 %

Heben und Tragen

6

Bei Gerätegewichten über 18 kg (39.68 lbs) sind zum Heben und Tragen dafür geeignete und zugelassene Vorrichtungen einzusetzen.

4 Planungshinweise für Druckmittlersysteme

4.1 Einfluss der Komponenten

Trennmembran

Folgende Eigenschaften der Trennmembran bestimmen den Einsatzbereich des Druckmittlers:

- Durchmesser
- Nachgiebigkeit
- Werkstoff

Je größer der Membrandurchmesser desto größer ist die Nachgiebigkeit und damit desto kleiner der Temperatureinfluss auf das Messergebnis. Um diesen Einfluss in praxisgerechten Grenzen zu halten, sollte die Nennweite des Druckmittlers möglichst ≥ DN 80 gewählt werden.

Die Nachgiebigkeit ist ferner abhängig von der Membranstärke, dem Werkstoff sowie einer eventuell vorhandenen Beschichtung.

Kapillare

Die Kapillarleitung beeinflusst durch Länge und Innendurchmesser den Temperaturkoeffizienten TK_{Nullpunk!}, die zulässige Umgebungstemperatur und die Sprungantwortzeit eines Druckmittlersystems. Siehe auch die Kapitel "Einfluss der Temperatur auf den Nullpunkt", "Umgebungstemperaturbereich" und "Sprungantwortzeit".

Druckmittlerfüllöl

Für die Auswahl des Füllöls sind Medium- und Umgebungstemperatur sowie der Prozessdruck von entscheidender Bedeutung. Beachten Sie aber auch die Temperaturen und Drücke während der Inbetriebnahme und der Reinigung.

Ein weiteres Auswahlkriterium ist die Verträglichkeit des Füllöls mit den Anforderungen des Mediums. So dürfen z. B. in der Nahrungsmittelindustrie nur gesundheitlich unbedenkliche Füllöle eingesetzt werden, wie z. B. medizinisches Weißöl. Eine Übersicht über die verfügbaren Druckmittlerfüllöle finden Sie in folgender Tabelle.

Die Tabelle zeigt auch die zugelassene Mediumtemperatur je nach Druckmittlerflüssigkeit und Geräteausführung für $p_{abs} > 1$ bar/14.5 psi. Mediumtemperatur bei Geräteausführung für $p_{abs} < 1$ bar/14.5 psi siehe Kapitel "*Druckmittler bei Vakuumanwendungen*".

Füllöl	Zugelassene Mediumtempe- ratur	Zugelassene Mediumtem- peratur bei p _{abs} < 1 bar/14.5 psi	Dichte in g/cm ³ bei 25 °C	Kinema- tische Viskosi- tät in cSt bei 25 °C	Korrek- turfaktor für TK	Anwen- dungsbe- reich
Silikonöl VE 2.2, KN 2.2	-40 +150 °C	(-40 +302 °F)	0,96	54,5	1	Standard
Silikonöl KN 17	-90 +180 °C (- 130 +356 °F)	-90 +80 °C (- 130 +176 °F)	0,92	4,4	-	Niedrige Tempera- turen

Füllöl	Zugelassene Mediumtempe- ratur	Zugelassene Mediumtem- peratur bei p _{abs} < 1 bar/14.5 psi	Dichte in g/cm ³ bei 25 °C	Kinema- tische Viskosi- tät in cSt bei 25 °C	Korrek- turfaktor für TK	Anwen- dungsbe- reich
Silikonöl VE 2.2, KN 2.2 und Kühl- element	-40 +200 °C (- 40 +392 °F)	-40 +150 °C (- 40 +302 °F)	0,96	54,5	1	Hohe Tempera- turen
Hochtemperaturöl VE 32, KN 32	-10 +300 °C (- 14 +572 °F)	-10 +200 °C (-	1,06	47,1	0,77	
Hochtemperaturöl VE 32, KN 32	-10 +400 °C (+14 +752 °F)	14 +392 °F)				
Halocarbonöl KN 21	-40 +150 °C (- 40 +302 °F)	-90 +80 °C (- 130 +176 °F)	1,89	10,6	0,83	Chloran- wendun- gen
Halocarbonöl KN 21 (BAM-ge- prüft) ¹⁾		-40 +140 °F)				Sauer- stoffan- wendun- gen
Medizinisches Weißöl KN 92, KN 92 (FDA-zu- gelassen)	-10 +150 °C (+14 +302 °F)		0,85	45,3	0,63	Lebens- mittelan- wendun- gen
Medizinisches Weißöl KN 92, KN 92 (FDA-zu- gelassen) und Kühlelement	-10 +250 °C (+14 +482 °F)	-10 +160 °C (+14 +320 °F)				Lebens- mittelan- wendun- gen, hohe Tempera- turen
Neobee M-20 KN 59 (FDA-zu- gelassen)	-10 +150 °C	(+14 +302 °F)	0,92	10	-	Lebens- mittelan- wendun- gen

Auch das eingesetzte Füllöl beeinflusst den TK_{Nullpunkt}, die zulässige Umgebungstemperatur und die Sprungantwortzeit eines Druckmittlers. Siehe auch Kapitel "*Einfluss der Temperatur auf den Nullpunkt*" und "*Sprungantwortzeit*".

Differenzdruckmessumformer

Ebenso beeinflusst der Differenzdruckmessumformer durch das Volumen seiner Seitenflansche und sein Steuervolumen den Temperatureinsatzbereich, den TK_{Nullpunkt} und die Sprungantwortzeit des Druckmittlersystems.²⁾

¹⁾ Reinigungsverfahren öl- und fettfrei für Sauerstoffanwendungen, max. Sauerstoffdruck 50 bar (725.2 psi) gemäß BAM-Untersuchung (Bundesamt für Materialforschung und Prüfung)

²⁾ Das Steuervolumen ist das Volumen, das verschoben werden muss, um den kompletten Messbereich zu durchfahren.

Einfluss von Temperaturänderungen 4.2

Bei einer Temperaturerhöhung dehnt sich das Füllöl aus. Das zusätzliche Volumen drückt auf die Druckmittlermembran. Je steifer eine Membran ist, desto mehr wirkt sie einer Volumenänderung entgegen. Sie wirkt zusätzlich zum Prozessdruck auf die Messzelle und verschiebt somit den Nullpunkt. Der jeweilige Temperaturkoeffizient "TK_{Prozess}" ist im Kapitel "*Maße und Gewichte*" aufgeführt.

Einfluss der Temperatur auf den Nullpunkt

Das folgende Diagramm zeigt den Temperaturkoeffizienten in Abhängigkeit von der Kapillarlänge. Die Prozesstemperatur entspricht der Kalibriertemperatur. Die aus dem Diagramm ermittelten Temperaturkoeffizienten gelten für Silikonöl und das Membranmaterial 316L. Für andere Füllöle sind diese Temperaturkoeffizienten mit dem Korrekturfaktor für den TK des entsprechenden Füllöls zu multiplizieren.

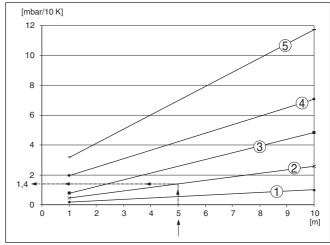


Abb. 2: Temperaturkoeffizient "TK_{Umaebuna}" in Abhängigkeit von der Kapillarlänge. Kennlinien 1 ... 5 beziehen sich auf die unten gelisteten Prozessanschlüsse

Kennlinie 1

Clamp 3" (ø 91 mm) nach DIN 32676, ISO 2852/316L

- EN-/DIN-Flansch DN 80 PN 10-40 B1, 316L
- EN-/DIN-Flansch DN 100 PN 10-16 B1, 316L
- EN-/DIN-Flansch DN 100 PN 25-40 B1, 316L
- ASME-Flansch 3" 150 lbs RF. 316/316L
- ASME-Flansch 3" 300 lbs RF. 316/316L
- DIN 11851 DN 80 PN 25, 316L
- DIN 11851 DN 80 PN 25 Stutzen, 316L
- Zelle DN 80 PN 16-400. 316L
- Zelle DN 100 PN 16-400, 316L
- Zellen 3" 150-2500 lbs. 316L

Kennlinie 3

ASME-Flansch 3" 150 lbs RF, 316/316L, Tubus: 2"/4"/6"/8"

Kennlinie 4

- EN-/DIN-Flansch DN 50 PN 10-40 B1, 316L
- ASME-Flansch 2" 150 lbs RF, 316/316L
- ASME-Flansch 3" 300 lbs RF, 316/316L
- DIN 11851 DN 50 PN 25, 316L
- DIN 11851 DN 50 PN 25 Stutzen, 316L
- Zelle DN 50 PN 16-400, 316L
- Zelle 2" 150-2500 lbs, 316L
- Kennlinie 5
 - DRD DN 50 (65 mm), PN 25, 316L

Beispielrechnung

- Druckmittler: EN-/DIN-Flansch DN 80 PN 10-40 B1, 316L
- Kapillarlänge: 5 m
- Umgebungstemperatur Kapillare/Messumformer: 45 °C
- Füllöl: Silikonöl

Zur Berechnung gehen Sie wie folgt vor:

- 1. Kennlinie für den Druckmittler gemäß Liste wählen.
 - Ergebnis: Kennlinie 2
- 2. Wert für TK_{Umgebung} aus dem Diagramm ermitteln.
 - Ergebnis: 1,4 mbar/10 K
- 3. T_{Umgebung} T_{Kalibrier} = 45 °C 25 °C = 20 °C; (1,4 mbar/10 K) 20 K = 2.8 mbar

Ergebnis:

In diesem Anwendungsfall wird der Nullpunkt um 2,8 mbar verschoben.

Der Einfluss der Temperatur auf den Nullpunkt kann durch einen Lageabgleich korrigiert werden.

Minderung des Temperatureinflusses

Zur Minderung des Temperatureinflusses bestehen folgende Möglichkeiten:

- Kleinerer Kapillar-Innendurchmesser (Hinweis: mit kleiner werdendem Durchmesser steigt jedoch die Sprungantwortzeit)
- Kürzere Kapillare
- Druckmittler mit größerem Membrandurchmesser
- Füllöl mit einem kleineren Ausdehnungskoeffizienten

Umgebungstemperaturbereich

Folgende Größen bestimmen den Umgebungstemperaturbereich des Druckmittlersystems:

- Füllöl
- Kapillarlänge
- Kapillarinnendurchmesser
- Ölvolumen des Druckmittlers
- Prozesstemperatur

Die folgenden Diagramme zeigen den zulässigen Umgebungstemperaturbereich in Abhängigkeit von der Kapillarlänge. Sie gelten für eine Prozesstemperatur von 25 °C und für Silikonöl. Der Einsatzbereich kann durch ein Füllöl mit einem kleineren Ausdehnungskoeffizienten und kürzere Kapillare ausgeweitet werden.

•

Hinweis:

Die Darstellungen sind jeweils beispielhaft und dienen zur Orientierung. Die tatsächlich zulässigen Temperaturen müssen für jeden Anwendungsfall individuell ermittelt werden.

Gruppe B

- Zelle 2" 150-2500 lbs, 316L
- ASME-Flansch 2" 150 lbs RF, 316/316L
- ASME-Flansch 2" 300 lbs RF, 316/316L
- Zelle DN 50 PN 16-400, 316L

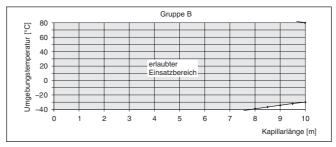


Abb. 3: Erlaubter Umgebungstemperaturbereich in Abhängigkeit von der Kapillarlänge für Druckmittler Gruppe B

Gruppe C

- EN-/DIN-Flansch DN 80 PN 10-40 B1, 316L
- EN-/DIN-Flansch DN 100 PN 10-16 B1, 316L
- EN-/DIN-Flansch DN 100 PN 25-40 B1, 316L
- DIN 11851 DN 80 PN 25, 316L
- Zelle DN 80 PN 16-400, 316L
- Zelle DN 100 PN 16-400, 316L
- Zelle 3" 150-2500 lbs, 316L

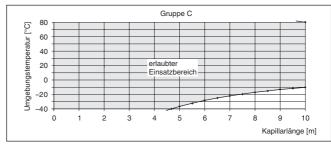


Abb. 4: Erlaubter Umgebungstemperaturbereich in Abhängigkeit von der Kapillarlänge für Druckmittler Gruppe C

Gruppe D

- ASME-Flansch 3" 150 lbs RF. 316/316L
- ASME-Flansch 3" 300 lbs RF, 316/316L
- Zelle 3" 150-2500 lbs, 316L

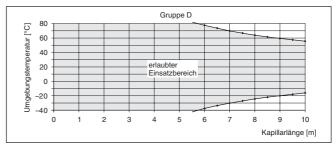


Abb. 5: Erlaubter Umgebungstemperaturbereich in Abhängigkeit von der Kapillarlänge für Druckmittler Gruppe D

Gruppe E

ASME-Flansch 3" 150 lbs RF, 316/316L, Tubus: 2"/4"/6"/8"

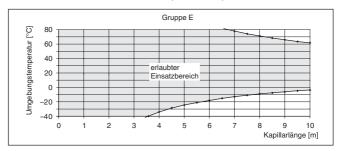


Abb. 6: Erlaubter Umgebungstemperaturbereich in Abhängigkeit von der Kapillarlänge für Druckmittler Gruppe E

Gruppe F

- DRD DN 50 (65 mm), PN 25, 316L

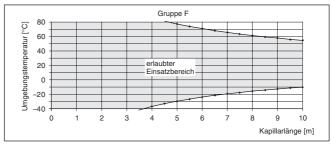


Abb. 7: Erlaubter Umgebungstemperaturbereich in Abhängigkeit von der Kapillarlänge für Druckmittler Gruppe F

4.3 Dynamisches Verhalten der Druckmittler

Sprungantwortzeit

Die Viskosität des Füllöls, die Kapillarlänge sowie -innendurchmesser beeinflussen den Reibungswiderstand. Je höher der Reibungswiderstand, desto länger die Sprungantwortzeit. Dazu beeinflusst das Steuervolumen der Messzelle die Sprungantwortzeit. Je geringer das Steuervolumen der Messzelle, desto geringer ist die Sprungantwortzeit.

Das folgende Diagramm zeigt Sprungantwortzeiten (T90) für die verschiedenen Füllöle in Abhängigkeit von Messzelle und Kapillar-Innendurchmesser. Die Werte sind in Sekunden pro Meter Kapillarlänge angegeben und mit der tatsächlichen Länge der Kapillare zu multiplizieren. Zusätzlich ist die Sprungantwortzeit des Messumformers zu berücksichtigen.

Hinweis:

Die Darstellung ist beispielhaft und dient zur Orientierung. Die tatsächlich auftretenden Zeiten müssen für jeden Anwendungsfall individuell ermittelt werden.

Abb. 8: Typische Sprungantwortzeiten (T90) in s/m für verschiedene Füllöle in Abhängigkeit von Messzelle und Kapillar-Innendurchmesser. Umgebungstemperatur = 20 °C

- 1 Silikonöl
- 2 Hochtemperaturöl
- 3 Medizinisches Weißöl
- 4 Halocarbonöl
- 5 Nennweite
- 6 Kapillarinnendurchmesser
- 7 Messzelle

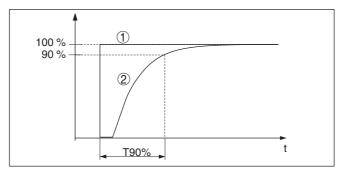


Abb. 9: Darstellung der Sprungantwortzeit (T90)

- 1 Drucksprung
- 2 Ausgangssignal

Minimierung der Sprungantwortzeit

Zur Minderung der Sprungantwortzeit bestehen folgende Möglichkeiten:

- Größerer Kapillar-Innendurchmesser
- Kürzere Kapillare
- Füllöl mit kleinerer Viskosität

4.4 Montageposition

Standardanwendungen

Bei einer Montage des Druckmessumformers oberhalb des unteren Druckmittlers darf der maximale Höhenunterschied H1 gemäß nachfolgender Abbildung nicht überschritten werden. Der Wert ist abhängig von der Dichte des Füllöls und dem kleinsten Druck, der an dem Druckmittler der Plusseite jemals auftreten darf (leerer Behälter).

Typische Werte für H1 sind 7 m bei Silikonöl und 4 m bei Halocarbonöl.

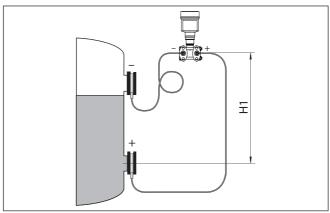


Abb. 10: Maximale Höhe bei Montage oberhalb des unteren Druckmittlers

Vakuumanwendungen

Bei Vakuumanwendungen sollte der Druckmessumformer auf gleicher Höhe oder unterhalb des unteren Druckmittlers montiert werden. Hierdurch wird eine zusätzliche Vakuumbelastung durch das Füllöl in den Kapillaren vermieden.

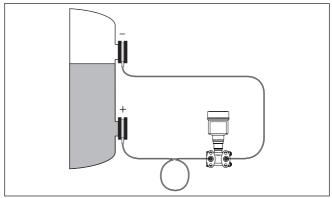


Abb. 11: Bevorzugte Montage unterhalb des unteren Druckmittlers

Dichtemessung

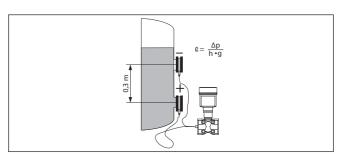


Abb. 12: Dichtemessung mit VEGADIF 85, h= definierter Montageabstand, $\Delta p=$ Differenzdruck, $\rho=$ Dichte des Mediums, g= Erdbeschleunigung

1 VEGADIF 85

Trennschichtmessung

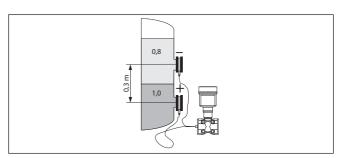


Abb. 13: Trennschichtmessung mit VEGADIF 85

- 1 VEGADIF 85
- 2 Flüssigkeit mit größerer Dichte
- 3 Flüssigkeit mit kleinerer Dichte

4.5 Auswahl des Messbereichs

Bei Geräten mit Druckmittlern und Kapillaren ist bei der Auswahl der Messzelle die Nullpunktverschiebung durch den hydrostatischen Druck der Füllflüssigkeitssäule in den Kapillaren zu beachten.

Beispiel zur Auswahl der Messzelle

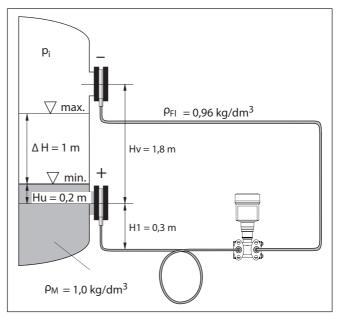


Abb. 14: Daten zur Auswahl der Messzelle

Druck auf der Minusseite des Differenzdruckmessumformers bei Min.-Füllstand:

$$\begin{split} &p_{..} = p_{Hv} + p_{H1} = Hv \bullet \rho_{FI} \bullet g + H1 \bullet \rho_{FI} \bullet g + p_{i} \\ &= 1,8 \ m \bullet (0,96 \ kg/dm^{3} \bullet 9,81 \ m/s) + 0,3 \ m \bullet (0,96 \ kg/dm^{3} \bullet 9,81 m/s) \\ &+ p_{i} \\ &= 197,77 \ mbar + p_{i} \end{split}$$

Druck auf der Plusseite des Differenzdruckmessumformers bei Min.-Füllstand:

$$\begin{split} & p_{_{+}} \! = \! p_{_{Hu}} + p_{_{H1}} = Hu \bullet \! p_{_{FM}} \bullet g + H1 \bullet \! p_{_{Fl}} \bullet \! g + p_{_{i}} \\ & = 0.2 \text{ m} \bullet (1 \text{ kg/dm}^3 \bullet 9,81 \text{ m/s}) + 0.3 \text{ m} \bullet (0,96 \text{ kg/dm}^3 \bullet 9,81 \text{ m/s}) + p_{_{i}} \\ & = 47,87 \text{ mbar} + p_{_{i}} \end{split}$$

Differenzdruck am Messumformer bei Min.-Füllstand:

$$\Delta p_{\text{Transmitter}} = p_{+} - p_{-}$$

$$= 47,87 \text{ mbar} - 197,77 \text{ mbar}$$

$$= -149.90 \text{ mbar}$$

Differenzdruck am Messumformer bei Max.-Füllstand:

$$\Delta p_{\text{Transmitter}} = p_+ - p_- + \Delta H \cdot (1.0 \text{ kg/dm}^3 \cdot 9.81 \text{ m/s})$$

- = -149,90 mbar + 98,1 mbar
- = -51.80 mbar

Somit ist für dieses Anwendungsbeispiel eine 500 mbar-Messzelle erforderlich.

4.6 Berechnung des Temperaturfehlers

Einflussgrößen

Der Gesamttemperatureinfluss bei beidseitigem Druckmittleranbau setzt sich wie folgt zusammen:

- Einfluss der Prozesstemperatur am Druckmittler (TK_{Prozess})
- Korrekturfaktor bei Sonderwerkstoffen (bei Tantal, Alloy: 1,5; bei PTFE-Beschichtung: 1.8)
- Korrekturfaktor f
 ür F
 üll
 öl
- Einfluss der Umgebungstemperatur TK_{umg}, am Druckmessumformer (thermische Änderung von Nullsignal und Spanne)

Die Kalibriertemperatur des Druckmittlersystems beträgt 20 °C. Diese muss bei der Berechnung von der jeweiligen Prozess- oder Umgebungstemperatur abgezogen werden.

Der TK_{Prozess}-Druckmittler ist in den Tabellen in Kapitel "*Maße und Gewichte*" dieser Betriebsanleitung aufgeführt. Der Korrekturfaktor für das Füllöl ist in Kapitel "*Einfluss der Komponenten*" aufgeführt. Die thermische Änderung von Nullsignal und Spanne ist in Kapitel "*Technische Daten*" des Differenzdruckmessumformers angegeben.

Information:

Bei beidseitigem, identischen Druckmittleranbau sollten sich die Temperatureinflüsse eigentlich kompensieren. Es zeigt sich, dass dennoch ein Fehler durch Temperatureinfluss entsteht. In der Praxis rechnet man mit 20 % der Summe der Einzelfehler der beiden Druckmittler. Dies wird auch in dem folgenden Beispiel berücksichtigt.

Abschließend sind die jeweils berechneten Temperaturfehler von Druckmessumformer und Druckmittler geometrisch zu addieren.

Beispiel für beidseitigen Druckmittler:

- Prozesstemperatur: 100 °C
- Flanschdruckmittler DN 80 PN 10-40
- TK Prozess Flanschdruckmittler: 1,34 mbar/10K (siehe Kapitel "Anhang" dieser Anleitung)
- Kapillarlänge: 4 m
- Füllöl Silikon: Korrekturfaktor 1
- Membranwerkstoff: Tantal, Korrekturfaktor 1.5
- Umgebungstemperatur TU: 40 °C
- TK_{kapillare} = 0,3 mbar/10K (siehe Diagramm im Kapitel "Einfluss von Temperaturänderungen" bzw. Lieferunterlagen

ΔT Prozesstemperatur-Referenztemperatur Druckmittler

ΔT Umgebungstemperatur-Referenztemperatur Kapillare

Anzahl Druckmittler = 2

Fehlerberechnung

 $\Delta p_{Druckmittler} = (1,34 \text{ mbar/10K}) \cdot 80 \text{K} \cdot 2 = 21,44 \text{ mbar}$

Korrekturfaktor Membranwerkstoff = 21,44 mbar • 1,5 = 32,16 mbar

 $\Delta p_{Kapillare} = (0.3 \text{ mbar/10K}) \cdot 20 \text{K} \cdot 4 \text{ m} \cdot 2 = 4.8 \text{ mbar}$

 $\Delta p_{Gesamt} = 32,16 \text{ mbar} + 4,8 \text{ mbar} = 36,96 \text{ mbar}$

Der Gesamttemperaturfehler des beidseitigen Druckmittlers beträgt wie oben ausgeführt 20 % von 36,96 mbar, d. h. 7,4 mbar.

5 Montieren

5.1 Einsatzbedingungen

Eignung für die Prozessbedingungen

Beachten Sie unbedingt vor Montage, Inbetriebnahme und Betrieb, dass sowohl der Druckmessumformer als auch Druckmittler hinsichtlich Messbereich, Ausführung und Werkstoff geeignet für die Prozessbedingungen ausgewählt wurden. Die Belastungsgrenzen sind einzuhalten, um die spezifizierte Messgenauigkeit sicherzustellen.

Vorsicht:

Bei gefährlichen Messstoffen wie z. B. Sauerstoff, Acetylen, brennbaren oder giftigen Stoffen sowie bei Kälteanlagen, Kompressoren etc. müssen über die gesamten allgemeinen Regeln hinaus die jeweils bestehenden einschlägigen Vorschriften beachtet werden.

Prozess- und Umgebungstemperatur

Beachten Sie hinsichtlich Prozess- und Umgebungstemperatur folgende Punkte:

- Differenzdruckmessumformer so montieren, dass die zulässigen Prozess- und Umgebungstemperaturgrenzen weder unter- noch überschritten werden
- Dabei Einfluss von Konvektion und Wärmestrahlung berücksichtigen
- Bei der Auswahl der Druckmittler Druck- und Temperaturfestigkeit der Fittings und Flansche sicherstellen
- Hierzu Werkstoff und Druckstufe geeignet auswählen
- Temperatureinflüsse gering zu halten, deshalb Montage so, dass Plus- und Minusseite gleiche Umgebungstemperaturen haben

5.2 Sauerstoffanwendungen

Sauerstoffanwendungen

Sauerstoff und andere Gase können explosiv auf Öle, Fette und Kunststoffe reagieren, so dass unter anderem folgende Vorkehrungen getroffen werden müssen:

- Alle Komponenten der Anlage, wie z. B. Messgeräte, müssen gemäß den BAM (Bundesanstalt für Materialforschung und Prüfung)-Anforderungen für Sauerstoffanwendungen öl- und fettfrei gereinigt sein
- Bei Sauerstoffanwendungen bestimmte maximale Temperaturen und Drücke dürfen nicht überschritten werden, siehe Kapitel
 "Technische Daten" und "Druckmittler bei Vakuumanwendungen", dabei zusätzlich Dichtungswerkstoff berücksichtigen

Gefahr:

Geräte für Sauerstoffanwendungen dürfen erst unmittelbar vor der Montage aus der PE-Folie ausgepackt werden. Nach Entfernen des Schutzes für den Prozessanschluss ist die Kennzeichnung "O2" auf dem Prozessanschluss sichtbar. Jeder Eintrag von Öl, Fett und Schmutz ist zu vermeiden. Explosionsgefahr!

5.3 Hinweise zur Handhabung

- Geräte vor grober Verschmutzung und starken Schwankungen der Umgebungstemperatur schützen
- Messsystem zum Schutz vor mechanischen Beschädigungen bis zur Montage in der Werksverpackung lassen
- Bei der Entnahme aus der Werksverpackung und bei Montage mechanische Beschädigungen und Verformungen der Membran durch besondere Vorsicht verhindern
- Druckmessumformer nicht an Kapillarleitung tragen
- Kapillarleitungen nicht knicken. Knickstellen bedeuten Leckagegefahr und Gefahr der Erhöhung der Einstellzeit
- Versiegelte Füllschrauben am Druckmittler bzw. am Druckmessumformer niemals lösen
- Die Druckmittlermembran nicht beschädigen; Kratzer auf der Druckmittlermembran (z. B. von scharfkantigen Gegenständen) sind Hauptangriffstellen für Korrosion

5.4 Montagehinweise

Abdichtung

- Zur Abdichtung sind geeignete Dichtungen auszuwählen
- Bei der Flanschmontage Dichtung mit genügend großem Innendurchmesser verwenden und die Dichtung zentrisch einlegen;
 Membranberührungen führen zu Messabweichungen
- Bei Einsatz von Elastomer- bzw. PTFE-Dichtungen, Vorschriften des Dichtungsherstellers, insbesondere hinsichtlich Anzugsmoment und Setzzyklen beachten

Verlegung der Kapillare

- Schwingungsfrei verlegen, um zusätzliche Druckschwankungen zu vermeiden
- Nicht in der Nähe von Heiz- oder Kühlleitungen verlegen
- Bei kälteren bzw. wärmeren Umgebungstemperaturen isolieren
- Biegeradius der Kapillare ≥ 30 mm

6 Instandhalten und Störungen beseitigen

6.1 Instandhalten

Wartung

Bei bestimmungsgemäßer Verwendung ist im Normalbetrieb keine besondere Wartung erforderlich.

Bei manchen Anwendungen können Füllgutanhaftungen an der Trennmembran das Messergebnis beeinflussen. Treffen Sie deshalb je nach Anwendung Vorkehrungen, um starke Anhaftungen und insbesondere Aushärtungen zu vermeiden.

Vorsicht

Trennmembran auf keinen Fall mechanisch mit festen Gegenständen wie Werkzeugen reinigen! Dies kann zu Schäden an der Membran und Austreten von Füllöl führen.

Reinigen

Ggf. ist die Trennmembran mit weichem Pinsel/Bürste und geeignetem Reinigungsmittel zu reinigen. Hierbei ist die Beständigkeit der Werkstoffe gegenüber der Reinigung sicherzustellen. Die Vielfalt der Anwendungen von Druckmittlern erfordert spezielle Reinigungshinweise für jede Anwendung. Fragen Sie hierzu unsere für Sie zuständige Vertretung.

7 Anhang

7.1 Technische Daten

Werkstoffe

316L, 316L Gold-Rhodium-beschichtet, Alloy C276 (2.4819), Tantal, Titan, PFA, Alloy 400 (2.4819), Alloy 400 (2.4819) Gold-Rhodium-beschichtet, Nickel
316L, Alloy 400 (2.4819) medienberührt, Tantal medienberührt
316Ti
316L

Prozessbedingungen

Max. Prozessdruck, max. Prozesstem-siehe Betriebsanleitung des jeweiligen Sensors peratur

Prozessbedingungen bei Sauerstoffanwendungen

Max. Prozesstemperatur	Max. Sauerstoffdruck		
+60 °C	50 bar		
>+60 °C bis 100 °C	30 bar		
>+100 °C bis 175 °C	25 bar		

Prozessbedingungen - mechanisch (einseitig starrer Anbau)

Für die Prozessbedingungen sind zusätzlich die Angaben auf dem Typschild zu beachten. Es gilt der jeweils betragsmäßig niedrigste Wert.

Vibrationsfestigkeit3)

Ausführung	Gehäuse	Vibrationsfestigkeit		
Druckmessumformer	Kunststoffgehäuse	4M5 (1 g)		
senkrecht oder waage- recht	Aluminiumgehäuse	4NO (1 g)		
	Edelstahlgehäuse	4M3 (0,5 g)		

Schockfestigkeit4)

Ausführung	Gehäuse	Schockfestigkeit
Druckmessumformer	Kunststoffgehäuse	
senkrecht oder waage- recht	Aluminiumgehäuse	6M4 (10 g/11 ms, 30 g/6 ms, 50 g/2,3 ms)
	Edelstahlgehäuse	

³⁾ Prüfablauf nach IEC 60068-2-6 (5 ... 200 Hz), Klassifizierung gemäß IEC 60721-3-4

⁴⁾ Geprüft gemäß IEC 60068-2-27, Klassifizierung gemäß IEC 60721-3-6

7.2 Druckmittler bei Vakuumanwendungen

Ein Druckmittler ist zum Medium hin mit einer metallischen Membran abgeschlossen. Der Innenraum zwischen Membran und Sensorelement ist vollständig mit einer Druckübertragungsflüssigkeit gefüllt.

Bei abnehmendem Druck sinkt die Siedetemperatur der Druckübertragungsflüssigkeit. So können bei Druckwerten < 1 bar abs je nach Temperatur Gasteilchen frei werden, die in der Druckübertragungsflüssigkeit gelöst sind. Sie wird damit kompressibel, was zu Messwertverfälschungen führt.

Deshalb können Druckmittlersysteme je nach Druckübertragungsflüssigkeit, Prozesstemperatur und Druckwert im Vakuum nur eingeschränkt eingesetzt werden. Um den Einsatzbereich zu erweitern, bieten wir optional einen sogenannten Vakuumservice an.

Die folgenden Grafiken zeigen typische Einsatzbereiche für unterschiedliche Druckübertragungsflüssigkeiten. Die Kennlinien sind beispielhaft und können je nach Prozessanschluss und Membranwerkstoff auch abweichend davon verlaufen.

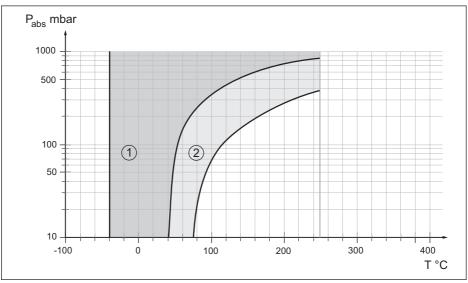


Abb. 15: Finsatzbereich für Silikonöl VF 2.2, KN 2.2

- 1 Standarddruckmittler
- 2 Druckmittler mit Vakuumservice

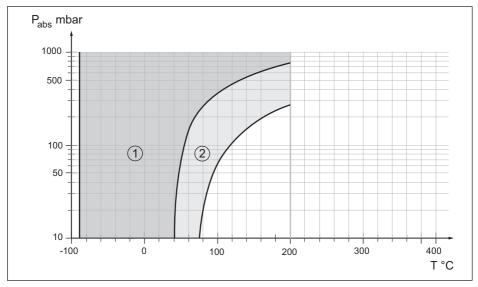


Abb. 16: Einsatzbereich für Silikonöl KN 17

- 1 Standarddruckmittler
- 2 Druckmittler mit Vakuumservice

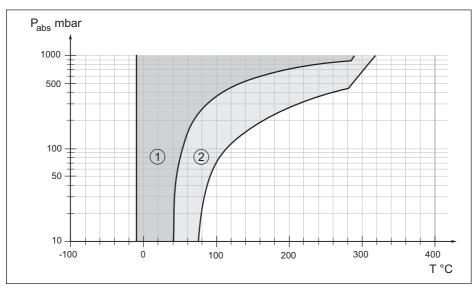


Abb. 17: Einsatzbereich für Hochtemperaturöl VE 32, KN 32

- 1 Standarddruckmittler
- 2 Druckmittler mit Vakuumservice

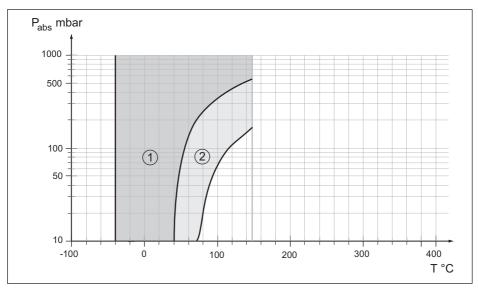


Abb. 18: Einsatzbereich für Halocarbonöl KN 21

- 1 Standarddruckmittler
- 2 Druckmittler mit Vakuumservice

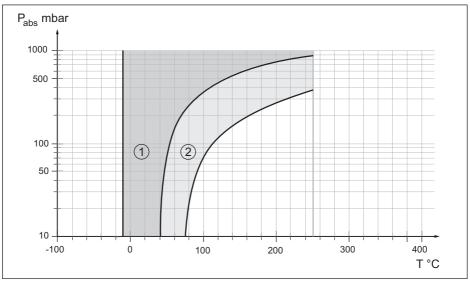


Abb. 19: Einsatzbereich für medizinisches Weißöl KN 92

- 1 Standarddruckmittler
- 2 Druckmittler mit Vakuumservice

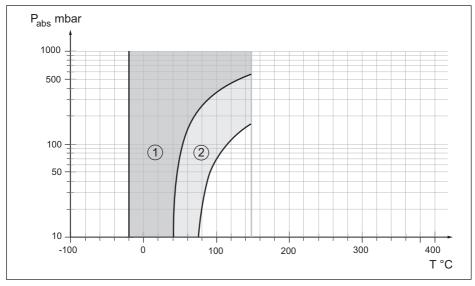


Abb. 20: Einsatzbereich für Neobee M-20 KN 59

- 1 Standarddruckmittler
- 2 Druckmittler mit Vakuumservice

7.3 Maße und Gewichte

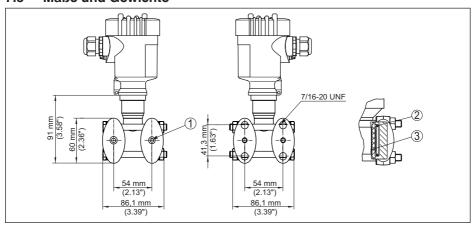


Abb. 21: Darstellungen links: Prozessanschluss VEGADIF 85 vorbereitet für Druckmittleranbau. Darstellung rechts: Lage der Kupferringdichtung

- 1 Für Druckmittleranbau
- 2 Kupferringdichtung
- 3 Membran

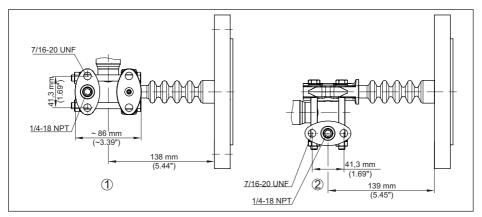


Abb. 22: Prozessanschluss VEGADIF 85 vorbereitet für Druckmittleranbau. Druckmittler an Hochdruckseite starr angebaut

- 1 Druckmessumformer senkrecht (100 mm)
- 2 Druckmessumformer waagerecht (100 mm)
- 3 Für Druckmittleranbau Niederdruckseite

In den folgenden Tabellen sind neben den Abmessungen die typischen Werte für den Temperaturkoeffizienten "TK Prozess" aufgeführt. Die Werte gelten für Silikonöl und das Membranmaterial 316L. Für andere Füllöle sind diese mit dem TK-Korrekturfaktor des entsprechenden Füllöls zu multiplizieren.

Der angegebene Nenndruck gilt für den Druckmittler. Der maximale Druck für die gesamte Messeinrichtung ist abhängig vom druckschwächsten Glied der ausgewählten Komponenten.

In den Tabellen sind die Gewichte der Druckmittler angegeben. Für das Gewicht des Transmitters siehe auch "*Maße und Gewichte*" in der Betriebsanleitung VEGADIF 85.

Bei den folgenden Zeichnungen handelt es sich um Prinzipzeichnungen. Die tatsächlichen Maße des Druckmittlers können von diesen Maßen abweichen.

Druckmittler mit EN-Flansch

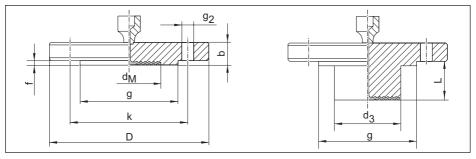


Abb. 23: Druckmittler mit EN-Flansch, Anschlussmaße gemäß EN 1092-1

Ausfüh- rung	Nenn- durch- messer	Nenn- druck	Form	Durch- messer D [mm]	Dicke b [mm]	Dichtleis- te g [mm]	Tubuslän- ge L [mm]	Tubus- durch- messer d3 [mm]
AH	DN 50	PN 40	D	165	20	102	-	-
FD	DN 50	PN 40	D	165	20	102	50	48,5
DH	DN 50	PN 40	D	165	20	102	150	48,5
FH	DN 80	PN 40	D	200	24	138	-	-
FJ	DN 80	PN 40	D	200	24	138	50	76
FK	DN 80	PN 40	D	200	24	138	100	76
FL	DN 80	PN 40	D	200	24	138	150	76
PW	DN 100	PN 40	D	220	20	158	150	94

Ausführung	Anzahl Schraublö- cher	Durchmesser Schraublö- cher g2 [mm]	Schraublö-	max. Membran- durchmesser dM [mm]	TK Prozess [mbar/10K]	Gewicht von zwei Druck- mittlern [kg]
FC	4	18	125	59	+1,20	6,0
AH	4	18	125	47	+4,2	8,6
DH	4	18	125	47	+4,2	-
FH	8	18	160	89	+0,4	10,4
FJ	8	18	160	72	+1,34	-
FK	8	18	160	72	-	-
FL	8	18	160	72	-	-
PW	8	18	190	89	+0,4	13,4

Druckmittler mit ASME-Flansch

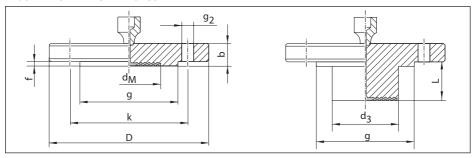


Abb. 24: Druckmittler mit ASME-Flansch, Anschlussmaße gemäß B16.5, Dichtleiste RF

Ausfüh- rung	Nenndurch- messer ["]	Class [lb] [sq.in]	Durchmes- ser D [in] [mm]	Dicke b [in] [mm]	1	Tubuslänge L [in][mm]	Tubus- durchmes- ser d3 [in] [mm]
F5	2	150	6 (150)	0.75 (20)	3.62 (92)	-	-

Ausfüh- rung	Nenndurch- messer ["]	Class [lb] [sq.in]	Durchmes- ser D [in] [mm]	Dicke b [in] [mm]	Dichtleiste g [in][mm]	Tubuslänge L [in][mm]	Tubus- durchmes- ser d3 [in] [mm]
F7	2	150	6 (150)	0.75 (20)	3.62 (92)	2 (50)	1.9 (48,3)
FS	3	150	7.5 (190)	0.94 (24)	5 (127)	-	-
EW	3	150	7.5 (190)	0.94 (24)	5 (127)	2 (50)	2.9 (73,7)

Ausführung	Anzahl Schraublö- cher	Durchmesser Schraublö- cher g2 [in] [mm]	Lochkreis Schraublö- cher k [in] [mm]	max. Membran- durchmesser dM [in][mm]	TK Prozess [mbar/10K]	Gewicht [kg]
F5	4	0.75	4.75	2.32	+1,20	2.7
		20	120,5	59		
F7	4	0.75	4.75	1.85	-	3.7
		20	120,5	47		
FS	4	0.75	6	3.50	+0,4	5.3
		20	152,5	89		
EW	4	0.75	6	2.83	+1.34	6.3
		20	152,5	72		

Rohrdruckmittler mit EN-Flansch

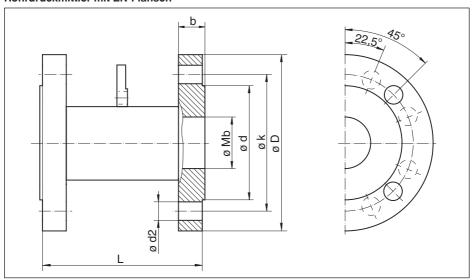


Abb. 25: Rohrdruckmittler mit EN-Flansch, Anschlussmaße gemäß EN 1092-1

Ausfüh- rung	Nenndurch- messer	Nenndruck	-	Durchmes- ser D [mm]		Dichtleiste g [mm]	Länge L [mm]
RB	DN 40	PN 40	D	150	18	88	146

Ausführung	Anzahl Schraublö- cher	Durchmesser Schraublö- cher d2 [mm]	Schraublö-	Membran- durchmesser dM [mm]	TK Prozess [mbar/10K]	Gewicht von zwei Druck- mittlern [kg]
RB	4	18	110	43	-	-

Bei den folgenden Zeichnungen handelt es sich um Prinzipzeichnungen. D. h. die Maße eines ausgelieferten Druckmittlers können von den angegebenen Maßen abweichen.

Druckmittler mit Clamp

Abb. 26: Druckmittler mit Clamp nach ISO 2852

Ausfüh- rung	Nenndurch- messer	Nenndruck			Höhe h [mm]		
СВ	DN 40	PN 10	64	35	20	±0,44	0,5

Druckmittler mit aseptischem Anschluss mit Nutüberwurfmutter

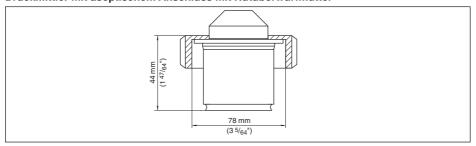


Abb. 27: Druckmittler mit aseptischem Anschluss mit Nutüberwurfmutter

Ausführung	Nenndruck		Gewicht von zwei Druck- mittlern [kg]
LA	PN 40	±0,44	0,5

Druckmittler mit Anschluss Varivent

Abb. 28: Druckmittler mit Anschluss Varivent Typ N für Rohre

Ausfüh- rung	Nenndurch- messer	Nenndruck			TK Prozess [mbar/10K]	Gewicht von zwei Druckmitt- lern [kg]
TA	DN 40 DN 162	PN 25	68	34	±0,56	1,6

Druckmittler mit Rohrverschraubung nach DIN 11851

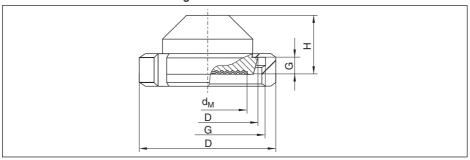


Abb. 29: Druckmittler mit Rohrverschraubung nach DIN 11851 (Ausführung Kegelstutzen mit Nutüberwurfmutter)

Ausfüh- rung	Nenn- durch- messer	Nenn- druck	Durch- messer D [mm]	Mem- bran- durch- messer dM [mm]	Nutmut- terge- winde G	Nutmut- terhöhe m [mm]	Kegel- höhe f [mm]	TK Prozess [mbar/10K]	Gewicht von zwei Druck- mittlern [kg]
RW	DN 50	PN 25	68,5	52	Rd 78x1/6"	19	11	±1,23	2,2
RX	DN 80	PN 25	100	81	Rd 110x1/4"	26	12	±0,34	4,1

Druckmittler mit DRD-Anschluss

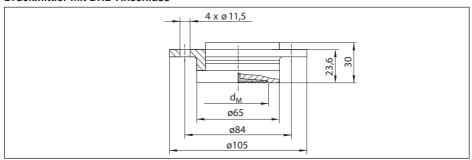


Abb. 30: Druckmittler mit DRD-Anschluss

	Membrandurch- messer dM [mm]	Nenndruck		Gewicht von zwei Druckmittlern [kg]
DW	65	PN 25	±0,20	1,5

Druckmittler mit Anschluss SMS

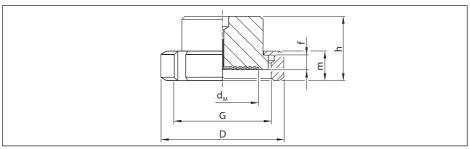


Abb. 31: Druckmittler mit Anschluss SMS 2" DN 51

Ausfüh- rung	Nenn- durch- messer	Nenn- druck	Nut- mutter- durch- messer D [mm]	Ge- winde- durch- messer G [mm]	Mem- bran- durch- messer dM [mm]	Nutmut- terhöhe m [mm]	Stutzen- höhe f [mm]	TK Prozess [mbar/10K]	Gewicht von zwei Druck- mittlern [kg]
SB	2"	PN 6	74	Rd 60 - 1/6	36	25	57	±0,18	1,3
SC	3"	PN 6	84	Rd 70 - 1/6	48	26	62	±0,18	2,1

Zellendruckmittler

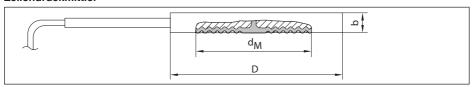


Abb. 32: Druckmittler in Zellenbauform

Ausfüh- rung	Nenn- durch- messer	Nenn- druck	Durch- messer d [mm]	Mem- bran- durch- messer dM [mm]	Höhe b [mm]	Tubus- länge L [in][mm]	Tubus- durch- messer d3 [in] [mm]	TK Prozess [mbar/10K]	Gewicht von zwei Druck- mittlern [kg]
AA	DN 50	PN 16- 400	102	59	20-22	-	-	±0,30	2,6
AQ	DN 80	PN 16- 400	138	89	20-22	-	-	±0,06	4,6
ZH	DN 80	PN 16- 400	138	89	20-22	350	76	-	5,6
AR	DN 100	PN 16- 400	138	89	20-22	-	-	±0,06	4,6

Ausfüh- rung	Nenn- durch- messer [in]	Class [lb][sq. in]	Durch- messer d [in] [mm]	Mem- bran- durch- messer dM [in] [mm]	Höhe b [in][mm]	Tubus- länge L [in][mm]	Tubus- durch- messer d3 [in] [mm]	TK Prozess [mbar/10K]	Gewicht von zwei Druck- mittlern [kg]
CA	2	150-	3,91	2,32	0,792	-	-	±0,30	2,6
		2500	102	59	20				
CK	3	150-	5,28	3,50	0,792	-	-	±0,06	4,6
		2500	138	89	20				

Druckmittler mit Anschluss für Stoffauflauf

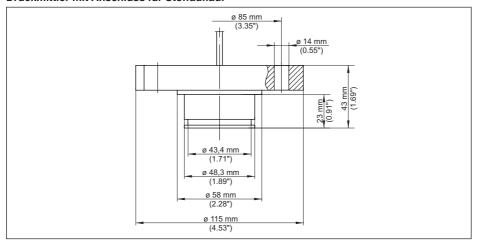


Abb. 33: Druckmittler mit Anschluss für Stoffauflauf nach ZG 2976, beidseitig abgeflacht

Ausfüh- rung	Flansch- größe	Nenn- druck	Durch- messer d [mm]	Mem- bran- durch- messer dM [mm]	Höhe b [mm]	Tubus- länge L [in][mm]	Tubus- durch- messer d3 [in] [mm]	TK Prozess [mbar/10K]	Gewicht von zwei Druck- mittlern [kg]
A1	DN 25	ohne PN-An- gabe	102	59	20	23	48	±0,30	2,6

7.4 Gewerbliche Schutzrechte

VEGA product lines are global protected by industrial property rights. Further information see www.vega.com.

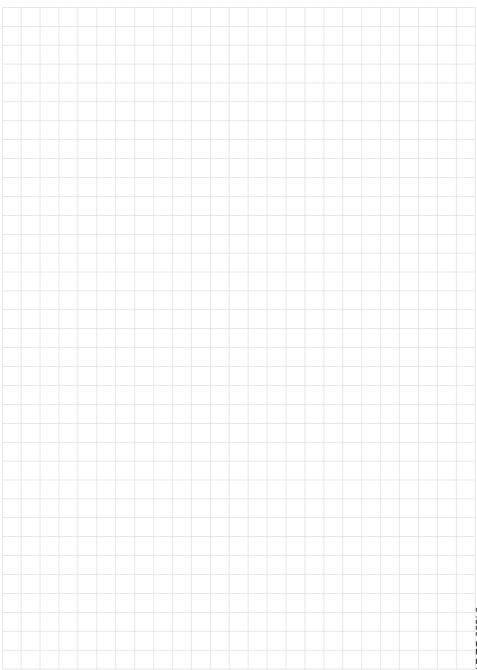
VEGA Produktfamilien sind weltweit geschützt durch gewerbliche Schutzrechte.

Nähere Informationen unter www.vega.com.

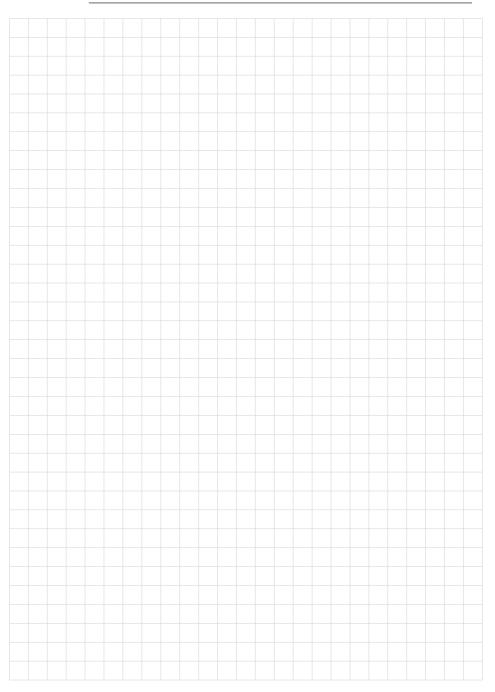
Les lignes de produits VEGA sont globalement protégées par des droits de propriété intellectuelle. Pour plus d'informations, on pourra se référer au site www.vega.com.

VEGA lineas de productos están protegidas por los derechos en el campo de la propiedad industrial. Para mayor información revise la pagina web www.vega.com.

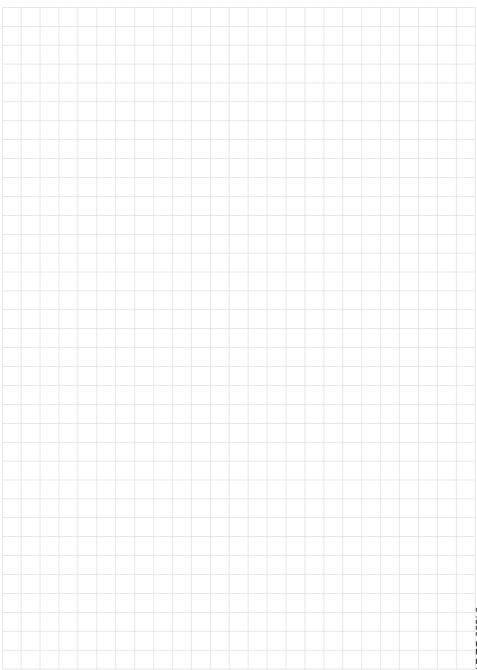
Линии продукции фирмы ВЕГА защищаются по всему миру правами на интеллектуальную собственность. Дальнейшую информацию смотрите на сайте <u>www.vega.com</u>.

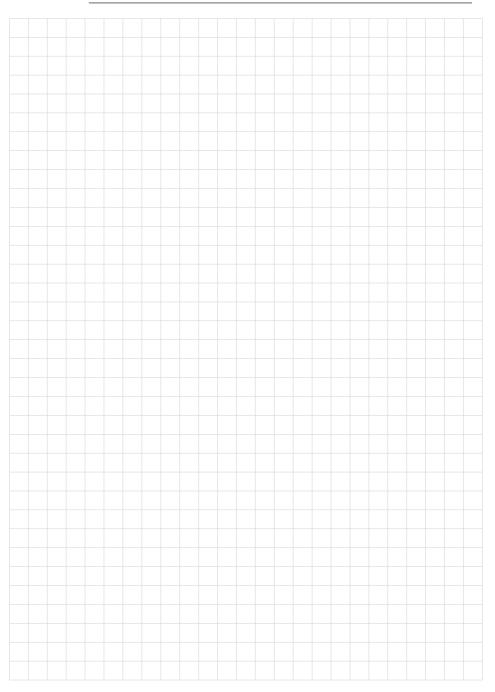

VEGA系列产品在全球享有知识产权保护。

进一步信息请参见网站<www.vega.com。


7.5 Warenzeichen

Alle verwendeten Marken sowie Handels- und Firmennamen sind Eigentum ihrer rechtmäßigen Eigentümer/Urheber.





Druckdatum:

Die Angaben über Lieferumfang, Anwendung, Einsatz und Betriebsbedingungen der Sensoren und Auswertsysteme entsprechen den zum Zeitpunkt der Drucklegung vorhandenen Kenntnissen.
Änderungen vorbehalten

© VEGA Grieshaber KG, Schiltach/Germany 2024

54850-DE-240513