Betriebsanleitung

TDR-Sensor zur kontinuierlichen Füllstand- und Trennschichtmessung von Flüssigkeiten

VEGAFLEX 83

Modbus- und Levelmaster-Protokoll Polierte Stabmesssonde

Document ID: 51517

Inhaltsverzeichnis

1 Zu diesem Dokument					
	1.1	Funktion	4		
	1.2	Zielgruppe	4		
	1.3	Verwendete Symbolik	4		
		•			
2	Zu II	rer Sicherheit			
	2.1	Autorisiertes Personal	5		
	2.2	Bestimmungsgemäße Verwendung	5		
	2.3	Warnung vor Fehlgebrauch			
	2.4	Allgemeine Sicherheitshinweise	5		
	2.5	EU-Konformität			
	2.6	NAMUR-Empfehlungen			
	2.7	Umwelthinweise	6		
3	Prod	Produktbeschreibung			
	3.1	Aufbau			
	3.2	Arbeitsweise			
	3.3	Verpackung, Transport und Lagerung			
		1 0 1			
	3.4	Zubehör	11		
4	Mon	tieren	13		
-	4.1	Allgemeine Hinweise			
	4.2	Montagehinweise	1.0		
		-			
5	An d	ie Spannungsversorgung und das Bussystem anschließen	19		
	5.1	Anschluss vorbereiten	19		
	5.2	Anschließen			
	5.3	Anschlussplan Einkammergehäuse			
	5.4	Geräteadresse einstellen			
	5.5	Einschaltphase			
		·			
6	Sens	Sensor mit dem Anzeige- und Bedienmodul in Betrieb nehmen			
	6.1	Bedienumfang	25		
	6.2	Anzeige- und Bedienmodul einsetzen	25		
	6.3	Bediensystem			
		Deciensystem			
	h 4				
	6.4 6.5	Parametrierung - Schnellinbetriebnahme	27		
	6.5	Parametrierung - Schnellinbetriebnahme	27 27		
	6.5 6.6	Parametrierung - Schnellinbetriebnahme Parametrierung - Erweiterte Bedienung Sicherung der Parametrierdaten	27 27 47		
7	6.5 6.6	Parametrierung - Schnellinbetriebnahme	27 27 47		
7	6.5 6.6	Parametrierung - Schnellinbetriebnahme Parametrierung - Erweiterte Bedienung Sicherung der Parametrierdaten Sor und Modbus-Schnittstelle mit PACTware in Betrieb nehmen	27 27 47 48		
7	6.5 6.6 Sens	Parametrierung - Schnellinbetriebnahme Parametrierung - Erweiterte Bedienung Sicherung der Parametrierdaten Sor und Modbus-Schnittstelle mit PACTware in Betrieb nehmen Den PC anschließen	27 27 47 48 48		
7	6.5 6.6 Sens 7.1 7.2	Parametrierung - Schnellinbetriebnahme Parametrierung - Erweiterte Bedienung Sicherung der Parametrierdaten Sor und Modbus-Schnittstelle mit PACTware in Betrieb nehmen Den PC anschließen Parametrierung mit PACTware	27 27 47 48 48 48		
7	6.5 6.6 Sens 7.1 7.2 7.3	Parametrierung - Schnellinbetriebnahme Parametrierung - Erweiterte Bedienung Sicherung der Parametrierdaten Sor und Modbus-Schnittstelle mit PACTware in Betrieb nehmen Den PC anschließen Parametrierung mit PACTware Geräteadresse einstellen	27 27 47 48 48 48 50		
7	6.5 6.6 Sens 7.1 7.2 7.3 7.4	Parametrierung - Schnellinbetriebnahme Parametrierung - Erweiterte Bedienung Sicherung der Parametrierdaten Sor und Modbus-Schnittstelle mit PACTware in Betrieb nehmen Den PC anschließen Parametrierung mit PACTware Geräteadresse einstellen In Betrieb nehmen mit der Schnellinbetriebnahme	27 27 47 48 48 48 50 51		
7	6.5 6.6 Sens 7.1 7.2 7.3 7.4 7.5	Parametrierung - Schnellinbetriebnahme Parametrierung - Erweiterte Bedienung Sicherung der Parametrierdaten Sor und Modbus-Schnittstelle mit PACTware in Betrieb nehmen Den PC anschließen Parametrierung mit PACTware Geräteadresse einstellen In Betrieb nehmen mit der Schnellinbetriebnahme Sicherung der Parametrierdaten	27 27 47 48 48 48 50 51 52		
7	6.5 6.6 Sens 7.1 7.2 7.3 7.4 7.5	Parametrierung - Schnellinbetriebnahme Parametrierung - Erweiterte Bedienung Sicherung der Parametrierdaten Sor und Modbus-Schnittstelle mit PACTware in Betrieb nehmen Den PC anschließen Parametrierung mit PACTware Geräteadresse einstellen In Betrieb nehmen mit der Schnellinbetriebnahme	27 27 47 48 48 48 50 51 52		
	6.5 6.6 Sens 7.1 7.2 7.3 7.4 7.5	Parametrierung - Schnellinbetriebnahme Parametrierung - Erweiterte Bedienung Sicherung der Parametrierdaten Sor und Modbus-Schnittstelle mit PACTware in Betrieb nehmen Den PC anschließen Parametrierung mit PACTware Geräteadresse einstellen In Betrieb nehmen mit der Schnellinbetriebnahme Sicherung der Parametrierdaten nose und Service	27 27 47 48 48 48 50 51 52 53		
	6.5 6.6 Sens 7.1 7.2 7.3 7.4 7.5 Diag	Parametrierung - Schnellinbetriebnahme Parametrierung - Erweiterte Bedienung Sicherung der Parametrierdaten Sor und Modbus-Schnittstelle mit PACTware in Betrieb nehmen Den PC anschließen Parametrierung mit PACTware Geräteadresse einstellen In Betrieb nehmen mit der Schnellinbetriebnahme Sicherung der Parametrierdaten nose und Service Instandhalten	27 27 47 48 48 48 50 51 52 53		
	6.5 6.6 Sens 7.1 7.2 7.3 7.4 7.5 Diag 8.1 8.2	Parametrierung - Schnellinbetriebnahme Parametrierung - Erweiterte Bedienung Sicherung der Parametrierdaten Sor und Modbus-Schnittstelle mit PACTware in Betrieb nehmen Den PC anschließen Parametrierung mit PACTware Geräteadresse einstellen In Betrieb nehmen mit der Schnellinbetriebnahme Sicherung der Parametrierdaten nose und Service Instandhalten. Diagnosespeicher	27 27 47 48 48 48 50 51 52 53 53		
	6.5 6.6 Sens 7.1 7.2 7.3 7.4 7.5 Diag 8.1 8.2 8.3	Parametrierung - Schnellinbetriebnahme Parametrierung - Erweiterte Bedienung Sicherung der Parametrierdaten Sor und Modbus-Schnittstelle mit PACTware in Betrieb nehmen Den PC anschließen Parametrierung mit PACTware Geräteadresse einstellen In Betrieb nehmen mit der Schnellinbetriebnahme Sicherung der Parametrierdaten nose und Service Instandhalten. Diagnosespeicher Statusmeldungen	27 27 47 48 48 48 50 51 52 53 53 53 54		
	6.5 6.6 Sens 7.1 7.2 7.3 7.4 7.5 Diag 8.1 8.2	Parametrierung - Schnellinbetriebnahme Parametrierung - Erweiterte Bedienung Sicherung der Parametrierdaten Sor und Modbus-Schnittstelle mit PACTware in Betrieb nehmen Den PC anschließen Parametrierung mit PACTware Geräteadresse einstellen In Betrieb nehmen mit der Schnellinbetriebnahme Sicherung der Parametrierdaten nose und Service Instandhalten. Diagnosespeicher	27 27 47 48 48 50 51 52 53 53 54 58		

	8.6	Stab auswechseln	61
	8.7	Dichtung auswechseln	62
	8.8	Softwareupdate	64
	8.9	Vorgehen im Reparaturfall	
9	Δush	auen	66
•			
	9.1	Ausbauschritte	66
	9.2	Entsorgen	66
10	Δnha	ng	67
	Aiiia		
	10.1	Technische Daten	67
	10.2	Gerätekommunikation Modbus	74
	10.3	Modbus-Register	75
		Modbus RTU-Befehle	
		Levelmaster-Befehle	
	10.6	Konfiguration typischer Modbus-Hosts	82
	10.7	Maße	82
		Gewerbliche Schutzrechte	
	10.9	Warenzeichen	87

Sicherheitshinweise für Ex-Bereiche

Beachten Sie bei Ex-Anwendungen die Ex-spezifischen Sicherheitshinweise. Diese liegen jedem Gerät mit Ex-Zulassung als Dokument bei und sind Bestandteil der Betriebsanleitung.

Redaktionsstand: 2021-08-19

1 Zu diesem Dokument

1.1 Funktion

Die vorliegende Anleitung liefert Ihnen die erforderlichen Informationen für Montage, Anschluss und Inbetriebnahme sowie wichtige Hinweise für Wartung, Störungsbeseitigung, den Austausch von Teilen und die Sicherheit des Anwenders. Lesen Sie diese deshalb vor der Inbetriebnahme und bewahren Sie sie als Produktbestandteil in unmittelbarer Nähe des Gerätes jederzeit zugänglich auf.

1.2 Zielgruppe

Diese Betriebsanleitung richtet sich an ausgebildetes Fachpersonal. Der Inhalt dieser Anleitung muss dem Fachpersonal zugänglich gemacht und umgesetzt werden.

1.3 Verwendete Symbolik

Document ID

Dieses Symbol auf der Titelseite dieser Anleitung weist auf die Document ID hin. Durch Eingabe der Document ID auf www.vega.com kommen Sie zum Dokumenten-Download.

Information, Hinweis, Tipp: Dieses Symbol kennzeichnet hilfreiche Zusatzinformationen und Tipps für erfolgreiches Arbeiten.

Hinweis: Dieses Symbol kennzeichnet Hinweise zur Vermeidung von Störungen, Fehlfunktionen, Geräte- oder Anlagenschäden.

Vorsicht: Nichtbeachten der mit diesem Symbol gekennzeichneten Informationen kann einen Personenschaden zur Folge haben.

Warnung: Nichtbeachten der mit diesem Symbol gekennzeichneten Informationen kann einen ernsthaften oder tödlichen Personenschaden zur Folge haben.

Gefahr: Nichtbeachten der mit diesem Symbol gekennzeichneten Informationen wird einen ernsthaften oder tödlichen Personenschaden zur Folge haben.

Ex-Anwendungen

Dieses Symbol kennzeichnet besondere Hinweise für Ex-Anwendungen.

Liste

Der vorangestellte Punkt kennzeichnet eine Liste ohne zwingende Reihenfolge.

1 Handlungsfolge

Vorangestellte Zahlen kennzeichnen aufeinander folgende Handlungsschritte.

Batterieentsorgung

Dieses Symbol kennzeichnet besondere Hinweise zur Entsorgung von Batterien und Akkus.

2 Zu Ihrer Sicherheit

2.1 Autorisiertes Personal

Sämtliche in dieser Dokumentation beschriebenen Handhabungen dürfen nur durch ausgebildetes und vom Anlagenbetreiber autorisiertes Fachpersonal durchgeführt werden.

Bei Arbeiten am und mit dem Gerät ist immer die erforderliche persönliche Schutzausrüstung zu tragen.

2.2 Bestimmungsgemäße Verwendung

Der VEGAFLEX 83 ist ein Sensor zur kontinuierlichen Füllstandmessung.

Detaillierte Angaben zum Anwendungsbereich finden Sie in Kapitel "*Produktbeschreibung*".

Die Betriebssicherheit des Gerätes ist nur bei bestimmungsgemäßer Verwendung entsprechend den Angaben in der Betriebsanleitung sowie in den evtl. ergänzenden Anleitungen gegeben.

2.3 Warnung vor Fehlgebrauch

Bei nicht sachgerechter oder nicht bestimmungsgemäßer Verwendung können von diesem Produkt anwendungsspezifische Gefahren ausgehen, so z. B. ein Überlauf des Behälters durch falsche Montage oder Einstellung. Dies kann Sach-, Personen- oder Umweltschäden zur Folge haben. Weiterhin können dadurch die Schutzeigenschaften des Gerätes beeinträchtigt werden.

2.4 Allgemeine Sicherheitshinweise

Das Gerät entspricht dem Stand der Technik unter Beachtung der üblichen Vorschriften und Richtlinien. Es darf nur in technisch einwandfreiem und betriebssicherem Zustand betrieben werden. Der Betreiber ist für den störungsfreien Betrieb des Gerätes verantwortlich. Beim Einsatz in aggressiven oder korrosiven Medien, bei denen eine Fehlfunktion des Gerätes zu einer Gefährdung führen kann, hat sich der Betreiber durch geeignete Maßnahmen von der korrekten Funktion des Gerätes zu überzeugen.

Durch den Anwender sind die Sicherheitshinweise in dieser Betriebsanleitung, die landesspezifischen Installationsstandards sowie die geltenden Sicherheitsbestimmungen und Unfallverhütungsvorschriften zu beachten.

Eingriffe über die in der Betriebsanleitung beschriebenen Handhabungen hinaus dürfen aus Sicherheits- und Gewährleistungsgründen nur durch vom Hersteller autorisiertes Personal vorgenommen werden. Eigenmächtige Umbauten oder Veränderungen sind ausdrücklich untersagt. Aus Sicherheitsgründen darf nur das vom Hersteller benannte Zubehör verwendet werden.

Um Gefährdungen zu vermeiden, sind die auf dem Gerät angebrachten Sicherheitskennzeichen und -hinweise zu beachten.

2.5 EU-Konformität

Das Gerät erfüllt die gesetzlichen Anforderungen der zutreffenden EU-Richtlinien. Mit der CE-Kennzeichnung bestätigen wir die Konformität des Gerätes mit diesen Richtlinien.

Die EU-Konformitätserklärung finden Sie auf unserer Homepage.

Elektromagnetische Verträglichkeit

Geräte in Vierleiter- oder Ex-d-ia-Ausführung sind für den Einsatz in industrieller Umgebung vorgesehen. Dabei ist mit leitungsgebundenen und abgestrahlten Störgrößen zu rechnen, wie bei einem Gerät der Klasse A nach EN 61326-1 üblich. Sollte das Gerät in anderer Umgebung eingesetzt werden, so ist die elektromagnetische Verträglichkeit zu anderen Geräten durch geeignete Maßnahmen sicherzustellen.

2.6 NAMUR-Empfehlungen

Die NAMUR ist die Interessengemeinschaft Automatisierungstechnik in der Prozessindustrie in Deutschland. Die herausgegebenen NAMUR-Empfehlungen gelten als Standards in der Feldinstrumentierung.

Das Gerät erfüllt die Anforderungen folgender NAMUR-Empfehlungen:

- NE 21 Elektromagnetische Verträglichkeit von Betriebsmitteln
- NE 53 Kompatibilität von Feldgeräten und Anzeige-/Bedienkomponenten
- NE 107 Selbstüberwachung und Diagnose von Feldgeräten

Weitere Informationen siehe www.namur.de.

2.7 Umwelthinweise

Der Schutz der natürlichen Lebensgrundlagen ist eine der vordringlichsten Aufgaben. Deshalb haben wir ein Umweltmanagementsystem eingeführt mit dem Ziel, den betrieblichen Umweltschutz kontinuierlich zu verbessern. Das Umweltmanagementsystem ist nach DIN EN ISO 14001 zertifiziert.

Helfen Sie uns, diesen Anforderungen zu entsprechen und beachten Sie die Umwelthinweise in dieser Betriebsanleitung:

- Kapitel "Verpackung, Transport und Lagerung"
- Kapitel "Entsorgen"

3 Produktbeschreibung

3.1 Aufbau

Lieferumfang

Der Lieferumfang besteht aus:

- Sensor VEGAFLEX 83
- Optionales Zubehör
- Optional integriertes Bluetooth-Modul

Der weitere Lieferumfang besteht aus:

- Dokumentation
 - Kurz-Betriebsanleitung VEGAFLEX 83
 - Anleitungen zu optionalen Geräteausstattungen
 - Ex-spezifischen "Sicherheitshinweisen" (bei Ex-Ausführungen)
 - Ggf. weiteren Bescheinigungen

i

Information:

In dieser Betriebsanleitung werden auch optionale Gerätemerkmale beschrieben. Der jeweilige Lieferumfang ergibt sich aus der Bestellspezifikation.

Geltungsbereich dieser Betriebsanleitung

Die vorliegende Betriebsanleitung gilt für folgende Geräteausführungen:

- Hardware ab 1.0.0
- Software ab 1.3.0
- Nur für Geräteausführungen ohne SIL-Qualifikation

Typschild

Das Typschild enthält die wichtigsten Daten zur Identifikation und zum Einsatz des Gerätes:

Abb. 1: Aufbau des Typschildes (Beispiel)

- 1 Gerätetyp
- 2 Produktcode
- 3 Zulassungen
- 4 Versorgung und Signalausgang Elektronik
- 5 Schutzart
- 6 Sondenlänge (Messgenauigkeit optional)
- 7 Prozess- und Umgebungstemperatur, Prozessdruck
- 8 Werkstoff medienberührte Teile
- 9 Auftragsnummer
- 10 Seriennummer des Gerätes
- 11 Symbol für Geräteschutzklasse
- 12 ID-Nummern Gerätedokumentation
- 13 Hinweis zur Beachtung der Gerätedokumentation
- 14 Notifizierte Stelle für die CE-Kennzeichnung
- 15 Zulassungsrichtlinien

Seriennummer - Gerätesuche

Das Typschild enthält die Seriennummer des Gerätes. Damit finden Sie über unsere Homepage folgende Daten zum Gerät:

- Produktcode (HTML)
- Lieferdatum (HTML)
- Auftragsspezifische Gerätemerkmale (HTML)
- Betriebsanleitung und Kurz-Betriebsanleitung zum Zeitpunkt der Auslieferung (PDF)
- Prüfzertifikat (PDF) optional

Gehen Sie auf "www.vega.com" und geben Sie im Suchfeld die Seriennummer Ihres Gerätes ein.

Alternativ finden Sie die Daten über Ihr Smartphone:

- VEGA Tools-App aus dem "Apple App Store" oder dem "Google Play Store" herunterladen
- QR-Code auf dem Typschild des Gerätes scannen oder
- Seriennummer manuell in die App eingeben

3.2 Arbeitsweise

Anwendungsbereich

Der VEGAFLEX 83 ist ein Füllstandsensor mit polierter Stabmesssonde zur kontinuierlichen Füllstand- oder Trennschichtmessung und ist

besonders gut für Anwendungen in der Lebensmittel- und Pharmaindustrie geeignet.

Optional ist eine autoklavierbare Ausführung mit trennbarem Gehäuse lieferbar.

Funktionsprinzip - Füllstandmessung

Hochfrequente Mikrowellenimpulse werden entlang eines Stahlseils oder eines Stabes geführt. Beim Auftreffen auf die Mediumoberfläche werden die Mikrowellenimpulse reflektiert. Die Laufzeit wird vom Gerät ausgewertet und als Füllstand ausgegeben.

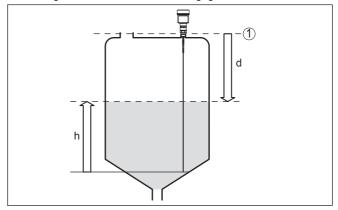


Abb. 2: Füllstandmessung

- 1 Sensorbezugsebene (Dichtfläche des Prozessanschlusses)
- d Distanz zum Füllstand
- h Höhe Füllstand

Funktionsprinzip - Trennschichtmessung

Hochfrequente Mikrowellenimpulse werden entlang eines Stahlseils bzw. Stabes geführt. Beim Auftreffen auf die Mediumoberfläche werden die Mikrowellenimpulse teilweise reflektiert. Der andere Teil durchläuft das obere Medium und wird an der Trennschicht ein zweites Mal reflektiert. Die Laufzeiten zu den beiden Mediumschichten werden vom Gerät ausgewertet.

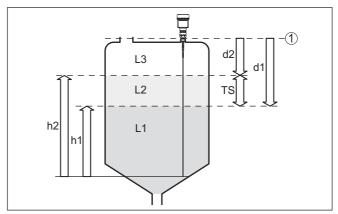


Abb. 3: Trennschichtmessung

- 1 Sensorbezugsebene (Dichtfläche des Prozessanschlusses)
- d1 Distanz zur Trennschicht
- d2 Distanz zum Füllstand
- TS Dicke des oberen Mediums (d1 d2)
- h1 Höhe Trennschicht
- h2 Höhe Füllstand
- L1 Unteres Medium
- L2 Oberes Medium
- L3 Gasphase

Voraussetzungen für die Trennschichtmessung

Oberes Medium (L2)

- Das obere Medium darf nicht leitfähig sein
- Die Dielektrizitätszahl des oberen Mediums oder die aktuelle Distanz zur Trennschicht muss bekannt sein (Eingabe erforderlich).
 Min. Dielektrizitätszahl: 1,6. Eine Liste der Dielektrizitätszahlen finden Sie auf unserer Homepage: www.vega.com
- Die Zusammensetzung des oberen Mediums muss stabil sein, keine wechselnden Medien oder Mischungsverhältnisse
- Das obere Medium muss homogen sein, keine Schichtungen innerhalb des Mediums
- Mindestdicke des oberen Mediums 50 mm (1.97 in)
- Klare Trennung zum unteren Medium, Emulsionsphase oder Mulmschicht max. 50 mm (1.97 in)
- Möglichst kein Schaum auf der Oberfläche

Unteres Medium (L1)

Dielektrizitätszahl mindestens um 10 größer als die Dielektrizitätszahl des oberen Mediums, vorzugsweise elektrisch leitfähig.
 Beispiel: oberes Medium Dielektrizitätszahl 2, unteres Medium Dielektrizitätszahl mindestens 12.

Gasphase (L3)

- Luft oder Gasgemisch
- Gasphase je nach Anwendung nicht immer vorhanden (d2 = 0)

Ausgangssignal

Das Gerät ist werkseitig immer auf die Anwendung "Füllstandmessung" voreingestellt.

Für die Trennschichtmessung können Sie das gewünschte Ausgangssignal bei der Inbetriebnahme auswählen.

3.3 Verpackung, Transport und Lagerung

Verpackung

Ihr Gerät wurde auf dem Weg zum Einsatzort durch eine Verpackung geschützt. Dabei sind die üblichen Transportbeanspruchungen durch eine Prüfung in Anlehnung an ISO 4180 abgesichert.

Die Geräteverpackung besteht aus Karton, ist umweltverträglich und wieder verwertbar. Bei Sonderausführungen wird zusätzlich PE-Schaum oder PE-Folie verwendet. Entsorgen Sie das anfallende Verpackungsmaterial über spezialisierte Recyclingbetriebe.

Transport

Der Transport muss unter Berücksichtigung der Hinweise auf der Transportverpackung erfolgen. Nichtbeachtung kann Schäden am Gerät zur Folge haben.

Transportinspektion

Die Lieferung ist bei Erhalt unverzüglich auf Vollständigkeit und eventuelle Transportschäden zu untersuchen. Festgestellte Transportschäden oder verdeckte Mängel sind entsprechend zu behandeln.

Lagerung

Die Packstücke sind bis zur Montage verschlossen und unter Beachtung der außen angebrachten Aufstell- und Lagermarkierungen aufzubewahren.

Packstücke, sofern nicht anders angegeben, nur unter folgenden Bedingungen lagern:

- Nicht im Freien aufbewahren
- Trocken und staubfrei lagern
- Keinen aggressiven Medien aussetzen
- Vor Sonneneinstrahlung schützen
- Mechanische Erschütterungen vermeiden

Lager- und Transporttemperatur

- Lager- und Transporttemperatur siehe Kapitel "Anhang Technische Daten Umgebungsbedingungen"
- Relative Luftfeuchte 20 ... 85 %

Heben und Tragen

Bei Gerätegewichten über 18 kg (39.68 lbs) sind zum Heben und Tragen dafür geeignete und zugelassene Vorrichtungen einzusetzen.

3.4 Zubehör

Die Anleitungen zu den aufgeführten Zubehörteilen finden Sie im Downloadbereich auf unserer Homepage.

PLICSCOM

Das Anzeige- und Bedienmodul dient zur Messwertanzeige, Bedienung und Diagnose.

Das integrierte Bluetooth-Modul (optional) ermöglicht die drahtlose Bedienung über Standard-Bediengeräte.

VEGACONNECT Der Schnittstellenadapter VEGACONNECT ermöglicht die Anbindung

kommunikationsfähiger Geräte an die USB-Schnittstelle eines PCs.

Schutzhaube Die Schutzhaube schützt das Sensorgehäuse vor Verschmutzung

und starker Erwärmung durch Sonneneinstrahlung.

Flansche Gewindeflansche stehen in verschiedenen Ausführungen nach

folgenden Standards zur Verfügung: DIN 2501, EN 1092-1, BS 10,

ASME B 16.5, JIS B 2210-1984, GOST 12821-80.

Anzeige- und Bedienmodul mit Heizung Das Anzeige- und Bedienmodul kann optional durch ein Anzeige- und

Bedienmodul mit Heizungsfunktion ersetzt werden.

Sie können das Anzeige- und Bedienmodul damit in einem Umge-

bungstemperaturbereich von -40 ... 70 °C verwenden.

Externes Gehäuse Wenn das Standard-Sensorgehäuse zu groß ist oder starke Vibrationen auftreten, können Sie ein externes Gehäuse verwenden.

Das Sensorgehäuse ist dann aus Edelstahl. Die Elektronik befindet sich im externen Gehäuse, das mit einem Verbindungskabel bis zu

10 m (32.8 ft) vom Sensor entfernt montiert werden kann.

Stabkomponenten Wenn Sie ein Gerät mit Stabausführung haben, können Sie die Stab-

messsonde mit unterschiedlich langen Stabverlängerungen beliebig verlängern bzw. für schwierige Einbausituationen segmentieren.

Alle verwendeten Verlängerungen dürfen eine Gesamtlänge von 4 m

(13.12 ft) nicht überschreiten.

Die Verlängerungen sind in folgenden Längen verfügbar:

Stab-ø 8 mm (0.315 in)

Basissegment: 450 mm (17.72 in)

Stabsegmente: 450 ... 480 mm (17.72 ... 18.9 in)

• Endsegment: 26 ... 480 mm (1.02 ... 18.9 in)

Zentrierung Wenn Sie den VEGAFLEX 83 in einem Bypass- oder Standrohr

einbauen, sollten Sie durch einen Zentrierstern am Sondenende eine

Berührung mit dem Bypassrohr verhindern.

4 Montieren

4.1 Allgemeine Hinweise

Schutz vor Feuchtigkeit

Schützen Sie Ihr Gerät durch folgende Maßnahmen gegen das Eindringen von Feuchtigkeit:

- Passendes Anschlusskabel verwenden (siehe Kapitel "An die Spannungsversorgung anschließen")
- Kabelverschraubung bzw. Steckverbinder fest anziehen
- Anschlusskabel vor Kabelverschraubung bzw. Steckverbinder nach unten führen

Dies gilt vor allem bei Montage im Freien, in Räumen, in denen mit Feuchtigkeit zu rechnen ist (z. B. durch Reinigungsprozesse) und an gekühlten bzw. beheizten Behältern.

Hinweis:

Stellen Sie sicher, dass während der Installation oder Wartung keine Feuchtigkeit oder Verschmutzung in das Innere des Gerätes gelangen kann.

Stellen Sie zur Erhaltung der Geräteschutzart sicher, dass der Gehäusedeckel im Betrieb geschlossen und ggfs. gesichert ist.

Kabelverschraubungen

Metrische Gewinde

Bei Gerätegehäusen mit metrischen Gewinden sind die Kabelverschraubungen werkseitig eingeschraubt. Sie sind durch Kunststoffstopfen als Transportschutz verschlossen.

Sie müssen diese Stopfen vor dem elektrischen Anschluss entfernen.

NPT-Gewinde

Bei Gerätegehäusen mit selbstdichtenden NPT-Gewinden können die Kabelverschraubungen nicht werkseitig eingeschraubt werden. Die freien Öffnungen der Kabeleinführungen sind deshalb als Transportschutz mit roten Staubschutzkappen verschlossen. Die Staubschutzkappen bieten keinen ausreichenden Schutz gegen Feuchtigkeit.

Sie müssen diese Schutzkappen vor der Inbetriebnahme durch zugelassene Kabelverschraubungen ersetzen oder mit geeigneten Blindstopfen verschließen.

Prozessbedingungen

Hinweis:

Das Gerät darf aus Sicherheitsgründen nur innerhalb der zulässigen Prozessbedingungen betrieben werden. Die Angaben dazu finden Sie in Kapitel "*Technische Daten*" der Betriebsanleitung bzw. auf dem Typschild.

Stellen Sie deshalb vor Montage sicher, dass sämtliche im Prozess befindlichen Teile des Gerätes für die auftretenden Prozessbedingungen geeignet sind.

Dazu zählen insbesondere:

- Messaktiver Teil
- Prozessanschluss
- Prozessdichtung

Prozessbedingungen sind insbesondere:

- Prozessdruck
- Prozesstemperatur
- Chemische Eigenschaften der Medien
- Abrasion und mechanische Einwirkungen

4.2 Montagehinweise

Montageposition

Montieren Sie das Gerät so, dass der Abstand zu Behältereinbauten oder der Behälterwand min. 300 mm (12 in) beträgt. Bei nicht metallischen Behältern sollte der Abstand zur Behälterwand mindestens 500 mm (19.7 in) betragen.

Die Messsonde darf während des Betriebs keine Einbauten oder die Behälterwand berühren. Falls erforderlich, sollten Sie das Sondenende befestigen.

Bei Behältern mit konischem Boden kann es vorteilhaft sein, das Gerät in Behältermitte zu montieren, da die Messung dann fast bis zum Behälterboden möglich ist. Beachten Sie, dass evtl. nicht bis zur Messsondenspitze gemessen werden kann. Den genauen Wert des Mindestabstands (untere Blockdistanz) finden Sie in Kapitel "Technische Daten" der Betriebsanleitung.

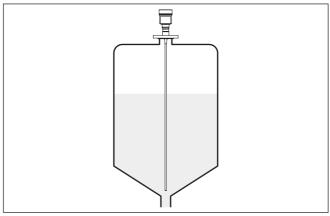


Abb. 4: Behälter mit konischem Boden

Behälterart

Kunststoffbehälter/Glasbehälter

Das Messprinzip der geführten Mikrowelle benötigt am Prozessanschluss eine metallische Fläche. Verwenden Sie deshalb in Kunststoffbehältern etc. eine Gerätevariante mit Flansch (ab DN 50) oder legen Sie beim Einschrauben ein Metallblech (Ø > 200 mm/8 in) unter den Prozessanschluss.

Achten Sie darauf, dass die Platte mit dem Prozessanschluss direkten Kontakt hat.

Bei der Montage von Stab- oder Seilmesssonden ohne metallische Behälterwand, z.B. Kunststoffbehälter kann der Messwert durch die Einwirkung von starken elektromagnetischen Feldern beeinflusst

werden (Störaussendung nach EN 61326: Klasse A). Verwenden Sie in diesem Fall eine Messsonde mit Koaxialausführung.

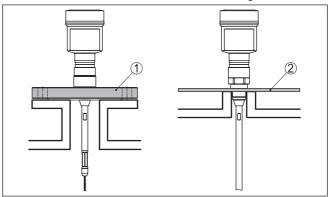


Abb. 5: Montage in nicht-metallischem Behälter

- 1 Flansch
- 2 Metallblech

Stutzen

Vermeiden Sie wenn möglich Behälterstutzen. Montieren Sie den Sensor möglichst bündig zur Behälterdecke. Ist dies nicht möglich, verwenden Sie kurze Stutzen mit kleinem Durchmesser.

Stutzen, die höher sind, oder einen größeren Durchmesser haben, sind generell möglich. Sie können jedoch die obere Blockdistanz vergrößern. Prüfen Sie, ob dies für Ihre Messung relevant ist.

Führen Sie in solchen Fällen nach der Montage immer eine Störsignalausblendung durch. Weitere Informationen finden Sie unter "Inbetriebnahmeschritte".

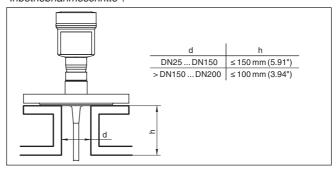


Abb. 6: Montagestutzen

Achten Sie beim Einschweißen des Stutzens darauf, dass der Stutzen bündig mit der Behälterdecke abschließt.

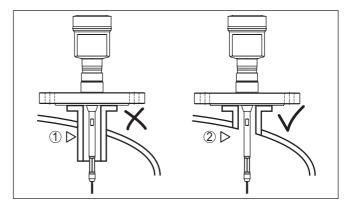


Abb. 7: Stutzen bündig einbauen

- 1 Ungünstige Montage
- 2 Stutzen bündig optimale Montage

Schweißarbeiten

Nehmen Sie vor Schweißarbeiten am Behälter den Elektronikeinsatz aus dem Sensor. Sie vermeiden damit Beschädigungen an der Elektronik durch induktive Einkopplungen.

Einströmendes Medium

Montieren Sie die Geräte nicht über oder in den Befüllstrom. Stellen Sie sicher, dass Sie die Mediumoberfläche erfassen und nicht das einströmende Medium.

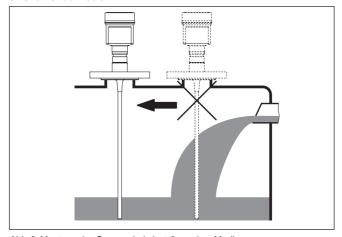


Abb. 8: Montage des Sensors bei einströmendem Medium

Messbereich

Die Bezugsebene für den Messbereich der Sensoren ist die Dichtfläche des Einschraubgewindes bzw. des Flansches.

Beachten Sie, dass unterhalb der Bezugsebene und eventuell am Messsondenende ein Mindestabstand eingehalten werden muss, in dem keine Messung möglich ist (Blockdistanz). Insbesondere

kann die Seillänge nur bei leitfähigen Medien bis zum Ende genutzt werden. Die Blockdistanzen für verschiedene Medien finden Sie in Kapitel "*Technische Daten*". Beachten Sie beim Abgleich, dass sich der Werksabgleich auf den Messbereich in Wasser bezieht.

Druck

Bei Über- oder Unterdruck im Behälter müssen Sie den Prozessanschluss abdichten. Prüfen Sie vor dem Einsatz, ob der Dichtungswerkstoff gegenüber dem Medium und der Prozesstemperatur beständig ist.

Den maximal zulässigen Druck können Sie dem Kapitel "Technische Daten" oder dem Typschild des Sensors entnehmen.

Seitlicher Einbau

Bei schwierigen Einbauverhältnissen kann die Messsonde auch seitlich eingebaut werden. Dafür können Sie den Stab mit Stabverlängerungen oder Bogensegmenten entsprechend anpassen.

Um die daraus entstehenden Laufzeitveränderungen zu kompensieren, müssen Sie die Sondenlänge automatisch vom Gerät bestimmen lassen.

Die ermittelte Sondenlänge kann bei der Verwendung von Bogensegmenten von der tatsächlichen Messsondenlänge abweichen.

Wenn an der Behälterwand Einbauten wie Stützstreben, Leitern etc. vorhanden sind, sollte die Messsonde mindestens 300 mm (11.81 in) von der Behälterwand entfernt sein.

Weitere Informationen finden Sie in der Zusatzanleitung der Stabverlängerungen.

Stabverlängerung

Bei schwierigen Einbaubedingungen z. B. in Stutzen, können Sie die Messsonde mit einer Stabverlängerung entsprechend anpassen.

Um die daraus entstehenden Laufzeitveränderungen zu kompensieren, müssen Sie die Sondenlänge automatisch vom Gerät bestimmen lassen.

Weitere Informationen finden Sie in der Zusatzanleitung der Stabund Seilkomponenten.

Autoklavierbare Ausführung

Zum Einsatz in einem Autoklaven, z. B. zur Sterilisation gibt es den VEGAFLEX 83 als autoklavierbare Ausführung.

Dabei können Sie das Gehäuse vom Prozessanschluss trennen.

Bei besonders rauen Umgebungsbedingungen ist die autoklavierbare Ausführung optional auch mit einem externem Gehäuse kombinierbar

Öffnen Sie die Nutmutter mit einem Hakenschlüssel und ziehen Sie das Gehäuse nach oben ab.

Die Seite des Prozessanschlusses muss nach Abnehmen des Gehäuses mit einem Deckel versehen werden. Schrauben Sie den beiliegenden Deckel mit Nutmutter auf die Geräteseite des Prozessanschlusses und ziehen Sie die Nutmutter mit einem Drehmoment von 20 Nm fest.

Achten Sie darauf, dass keine Flüssigkeit und kein Schmutz in das Gehäuse oder die Prozessseite eindringt.

Nach dem Autoklavieren drehen Sie den Deckel wieder ab und setzen das Gehäuse senkrecht auf die Prozessanschlussseite auf. Ziehen Sie die Nutmutter mit einem Drehmoment von 20 Nm fest.

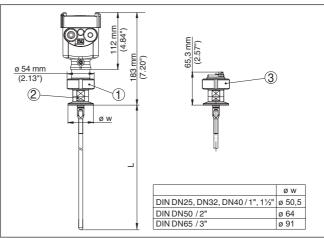


Abb. 9: Autoklavierbare Ausführung

- 1 Nutmutter
- 2 Prozessanschluss
- 3 Deckel mit Nutmutter

5 An die Spannungsversorgung und das Bussystem anschließen

5.1 Anschluss vorbereiten

Sicherheitshinweise

Beachten Sie grundsätzlich folgende Sicherheitshinweise:

- Elektrischen Anschluss nur durch ausgebildetes und vom Anlagenbetreiber autorisiertes Fachpersonal durchführen
- Falls Überspannungen zu erwarten sind, Überspannungsschutzgeräte installieren

Warnung:

Nur in spannungslosem Zustand anschließen bzw. abklemmen.

Spannungsversorgung

Das Gerät benötigt eine Betriebsspannung von 8 ... 30 V DC. Die Betriebsspannung und das digitale Bussignal werden über getrennte zweiadrige Anschlusskabel geführt.

Hinweis:

Versorgen Sie das Gerät über einen energiebegrenzten Stromkreis (Leistung max. 100 W) nach IEC 61010-1, z. B.:

- Class 2-Netzteil (nach UL1310)
- SELV-Netzteil (Sicherheitskleinspannung) mit passender interner oder externer Begrenzung des Ausgangsstromes

Anschlusskabel

Das Gerät wird mit handelsüblichem zweiadrigem, verdrillten Kabel mit Eignung für RS 485 angeschlossen. Falls elektromagnetische Einstreuungen zu erwarten sind, die über den Prüfwerten der EN 61326 für industrielle Bereiche liegen, sollte abgeschirmtes Kabel verwendet werden.

Verwenden Sie bei Geräten mit Gehäuse und Kabelverschraubung Kabel mit rundem Querschnitt. Verwenden Sie eine zum Kabeldurchmesser passende Kabelverschraubung, um die Dichtwirkung der Kabelverschraubung (IP-Schutzart) sicher zu stellen.

Beachten Sie, dass die gesamte Installation gemäß Feldbusspezifikation ausgeführt wird. Insbesondere ist auf die Terminierung des Busses über entsprechende Abschlusswiderstände zu achten.

Kabelverschraubungen

Metrische Gewinde

Bei Gerätegehäusen mit metrischen Gewinden sind die Kabelverschraubungen werkseitig eingeschraubt. Sie sind durch Kunststoffstopfen als Transportschutz verschlossen.

Hinweis:

Sie müssen diese Stopfen vor dem elektrischen Anschluss entfernen.

NPT-Gewinde

Bei Gerätegehäusen mit selbstdichtenden NPT-Gewinden können die Kabelverschraubungen nicht werkseitig eingeschraubt werden. Die freien Öffnungen der Kabeleinführungen sind deshalb als Transportschutz mit roten Staubschutzkappen verschlossen.

•

Hinweis:

Sie müssen diese Schutzkappen vor der Inbetriebnahme durch zugelassene Kabelverschraubungen ersetzen oder mit geeigneten Blindstopfen verschließen.

Beim Kunststoffgehäuse muss die NPT-Kabelverschraubung bzw. das Conduit-Stahlrohr ohne Fett in den Gewindeeinsatz geschraubt werden.

Maximales Anzugsmoment für alle Gehäuse siehe Kapitel "Technische Daten".

Kabelschirmung und Erdung

Beachten Sie, dass Kabelschirmung und Erdung gemäß Feldbusspezifikation ausgeführt werden. Wir empfehlen, die Kabelschirmung beidseitig auf Erdpotenzial zu legen.

Bei Anlagen mit Potenzialausgleich legen Sie die Kabelschirmung am Speisegerät und am Sensor direkt auf Erdpotenzial. Dazu muss die Kabelschirmung im Sensor direkt an die innere Erdungsklemme angeschlossen werden. Die äußere Erdungsklemme am Gehäuse muss niederimpedant mit dem Potenzialausgleich verbunden sein.

5.2 Anschließen

Anschlusstechnik

Der Anschluss der Spannungsversorgung und des Signalausganges erfolgt über Federkraftklemmen im Gehäuse.

Die Verbindung zum Anzeige- und Bedienmodul bzw. zum Schnittstellenadapter erfolgt über Kontaktstifte im Gehäuse.

Information:

Der Klemmenblock ist steckbar und kann von der Elektronik abgezogen werden. Hierzu Klemmenblock mit einem kleinen Schraubendreher anheben und herausziehen. Beim Wiederaufstecken muss er hörbar einrasten.

Anschlussschritte

Gehen Sie wie folgt vor:

- Gehäusedeckel abschrauben.
- Evtl. vorhandenes Anzeige- und Bedienmodul durch leichtes Drehen nach links herausnehmen
- Überwurfmutter der Kabelverschraubung lösen und Verschlussstopfen herausnehmen
- Anschlusskabel ca. 10 cm (4 in) abmanteln, Aderenden ca. 1 cm (0.4 in) abisolieren
- 5. Kabel durch die Kabelverschraubung in den Sensor schieben

Abb. 10: Anschlussschritte 5 und 6 - Einkammergehäuse

6. Aderenden nach Anschlussplan in die Klemmen stecken

Information:

Feste Adern sowie flexible Adern mit Aderendhülsen werden direkt in die Klemmenöffnungen gesteckt. Bei flexiblen Adern ohne Endhülse mit einem kleinen Schraubendreher oben auf die Klemme drücken, die Klemmenöffnung wird freigegeben. Durch Lösen des Schraubendrehers werden die Klemmen wieder geschlossen.

Weitere Informationen zum max. Aderquerschnitt finden Sie unter "Technische Daten - Elektromechanische Daten".

- Korrekten Sitz der Leitungen in den Klemmen durch leichtes Ziehen pr
 üfen
- Abschirmung an die innere Erdungsklemme anschließen, die äußere Erdungsklemme mit dem Potenzialausgleich verbinden
- 9. Überwurfmutter der Kabelverschraubung fest anziehen. Der Dichtring muss das Kabel komplett umschließen
- 10. Evtl. vorhandenes Anzeige- und Bedienmodul wieder aufsetzen
- 11. Gehäusedeckel verschrauben

Der elektrische Anschluss ist somit fertig gestellt.

5.3 Anschlussplan Einkammergehäuse

Anschlussplan - Daisy-Chain

Information:

Bei Modbus-Systemen können mehrere Sensoren in Parallelschaltung miteinander verbunden werden. Bei dieser sogenannten "Daisy-Chain" werden die Leitungen für Signal- und Spannungsversorgung von Sensor zu Sensor durchgeschleift.

Der letzte Sensor in dieser "Kette" muss mit einem Busabschluss versehen werden. Auf dem Elektronikeinsatz ist dazu ein zuschaltbarer Abschlusswiderstand. Achten Sie darauf, dass der Schiebeschalter (5) bei allen Sensoren der Kette auf "off" steht. Beim letzten Sensor stellen Sie den Schiebeschalter (5) auf Stellung "on".

Beachten Sie dazu auch die Informationen im Anhang zu "Grundlagen Modbus".

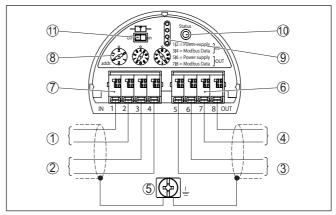


Abb. 11: Elektronikraum - Anschluss Daisy-Chain

- 1 Spannungsversorgung
- 2 Signaleingang
- 3 Spannungsversorgung (zu weiteren Modbus-Sensoren)
- 4 Signalausgang (zu weiteren Modbus-Sensoren)
- 5 Erdungsklemme im Gehäuse
- 6 Klemmenblock Ausgang (OUT)
- 7 Klemmenblock Eingang (IN)
- 8 Drehschalter zur Adresseinstellung
- 9 Kontakte für das Anzeige- und Bedienmodul bzw. den Schnittstellenadapter
- 10 Kontrollleuchte Status
- 11 Zuschaltbarer Bus-Abschlusswiderstand

Anschlussplan - Stichleitung

Beim Anschluss des Sensors an einer Stichleitung ist die Anordnung des Abschlusswiderstands unbestimmt.

Deshalb ist der Anschluss per Stichleitung zwar grundsätzlich möglich, aber nicht empfehlenswert.

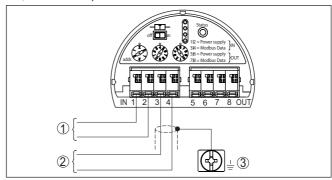


Abb. 12: Elektronikraum - Anschluss mit Stichleitung

- 1 Spannungsversorgung
- 2 Signalausgang
- 3 Erdungsklemme im Gehäuse

Geräteadresse

5.4 Geräteadresse einstellen

Jedem Modbus-Gerät muss eine Adresse zugewiesen werden. Die zugelassenen Adressen liegen im Bereich von 000 bis 247. Jede Adresse darf in einem Modbus-Netz nur einmal vergeben werden. Nur bei korrekt eingestellter Adresse wird der Sensor vom Leitsystem erkannt.

Sie können dem Gerät mit den Drehschaltern auf dem Elektronikeinsatz eine Hardwareadresse zuweisen. Es ist allerdings auch möglich, eine Softwareadresse zu vergeben. Dazu muss das Gerät auf eine bestimmte Hardwareadresse eingestellt sein. Bei Modbus ist dies die Hardwareadresse 246, bei Levelmaster sind es die Hardwareadressen von 31 ... 299. Wenn Sie die Geräteadresse per Software zuweisen möchten, empfehlen wir die Hardwareadresse auf 246 eingestellt zu lassen.

Im Auslieferungszustand werkseitig ist die Adresse 246 eingestellt (Hardwareadresse 246, Softwareadresse 246). Diese kann zur Funktionsprüfung des Gerätes und zum Anschluss an ein vorhandendes Modbus-Netzwerk genutzt werden. Anschließend muss diese Adresse geändert werden, um weitere Geräte einbinden zu können.

Die Adresseinstellung erfolgt wahlweise über:

- Die Adresswahlschalter auf dem Elektronikeinsatz des Gerätes (hardwaremäßige Adresseinstellung)
- Das Anzeige- und Bedienmodul (softwaremäßige Adresseinstellung)
- PACTware/DTM (softwaremäßige Adresseinstellung)

Hardwareadressierung

Das Gerät erkennt automatisch anhand der Eingangsdaten, ob ein Modbus- oder Levelmaster-Protokoll vorliegt.

Die Hardwareadressierung bei Modbus ist wirksam, wenn mit den Adresswahlschaltern am Gerät eine Adresse kleiner oder gleich 245 eingestellt wird. Damit ist die Softwareadressierung unwirksam, es gilt die eingestellte Hardwareadresse.

Die Hardwareadressierung beim Levelmaster-Protokoll ist wirksam, wenn mit den Adresswahlschaltern am Gerät eine Adresse kleiner oder gleich 30 eingestellt wird. Damit ist die Softwareadressierung unwirksam, es gilt die eingestellte Hardwareadresse.

Verfügbare Hardwareadressen:

- Hardwareadresse Levelmaster: 000 ... 030
- Hardwareadresse Modbus: 000 ... 245

Stellen Sie die Geräteadresse mit den drei Drehschaltern auf dem Flektronikeinsatz ein.

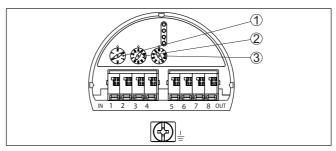


Abb. 13: Adresswahlschalter

- 1 Hunderterstelle der Adresse (Auswahl 0 bis 2)
- 2 Zehnerstelle der Adresse (Auswahl 0 bis 9)
- 3 Einerstelle der Adresse (Auswahl 0 bis 9)

Softwareadressierung

Die Softwareadressierung für Modbus ist wirksam, wenn mit den Adresswahlschaltern am Gerät die Adresse 246 eingestellt wird. Die Adresse 247 ist dabei eine weitere Hardwareadresse.

Beim Levelmaster-Protokoll ist die Softwareadressierung wirksam, wenn mit den Adresswahlschaltern am Gerät die Adresse 031 oder größer eingestellt wird.

Sie können die Geräteadresse mit dem Anzeige- und Bedienmodul oder mit der Software PACTware/DTM einstellen.

Verfügbare Softwareadressen:

- Softwareadresse Levelmaster: Wenn Hardwareadresse ≥ 031 eingestellt ist, können softwaremäßig die Adressen 000 ... 031 ausgewählt werden
- Softwareadresse Modbus: Wenn Hardwareadresse 246 eingestellt ist, können softwaremäßig die Adressen 000 ... 246 ausgewählt werden

5.5 Einschaltphase

Nach dem Anschluss des VEGAFLEX 83 an das Bussystem führt das Gerät zunächst einen Selbsttest durch:

- Interne Prüfung der Elektronik
- Anzeige der Statusmeldung "F 105 Ermittle Messwert" auf Display bzw. PC
- Statusbyte geht auf Störung

Danach wird der aktuelle Messwert auf der Signalleitung ausgegeben. Der Wert berücksichtigt bereits durchgeführte Einstellungen, z. B. den Werksabgleich.

6 Sensor mit dem Anzeige- und Bedienmodul in Betrieb nehmen

6.1 Bedienumfang

Das Anzeige- und Bedienmodul dient ausschließlich zur Parametrierung des Sensors, d. h. der Anpassung an die Messaufgabe.

Die Parametrierung der Modbusschnittstelle erfolgt über einen PC mit PACTware. Die Vorgehensweise hierzu finden Sie in Kapitel "Sensor und Modbus-Schnittstelle mit PACTware in Betrieb nehmen".

6.2 Anzeige- und Bedienmodul einsetzen

Das Anzeige- und Bedienmodul kann jederzeit in den Sensor eingesetzt und wieder entfernt werden. Dabei sind vier Positionen im 90°-Versatz wählbar. Eine Unterbrechung der Spannungsversorgung ist hierzu nicht erforderlich.

Gehen Sie wie folgt vor:

- 1. Gehäusedeckel abschrauben
- Anzeige- und Bedienmodul in die gewünschte Position auf die Elektronik setzen und nach rechts bis zum Einrasten drehen
- 3. Gehäusedeckel mit Sichtfenster fest verschrauben

Der Ausbau erfolgt sinngemäß umgekehrt.

Das Anzeige- und Bedienmodul wird vom Sensor versorgt, ein weiterer Anschluss ist nicht erforderlich.

Abb. 14: Einsetzen des Anzeige- und Bedienmoduls beim Einkammergehäuse im Elektronikraum

Hinweis:

Falls Sie das Gerät mit einem Anzeige- und Bedienmodul zur ständigen Messwertanzeige nachrüsten wollen, ist ein erhöhter Deckel mit Sichtfenster erforderlich.

6.3 Bediensystem

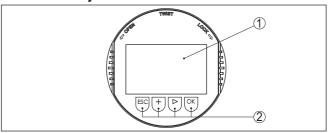


Abb. 15: Anzeige- und Bedienelemente

- 1 LC-Display
- 2 Bedientasten

Tastenfunktionen

[OK]-Taste:

- In die Menüübersicht wechseln
- Ausgewähltes Menü bestätigen
- Parameter editieren
- Wert speichern

[->]-Taste:

- Darstellung Messwert wechseln
- Listeneintrag auswählen
- Editierposition wählen

• [+]-Taste:

Wert eines Parameters verändern

[ESC]-Taste:

- Eingabe abbrechen
- In übergeordnetes Menü zurückspringen

Bediensystem

Sie bedienen den Sensor über die vier Tasten des Anzeige- und Bedienmoduls. Auf dem LC-Display werden die einzelnen Menüpunkte angezeigt. Die Funktion der einzelnen Tasten finden Sie in der vorhergehenden Darstellung.

Bei einmaligem Betätigen der [+]- und [->]-Tasten ändert sich der editierte Wert bzw. der Cursor um eine Stelle. Bei Betätigen länger als 1 s erfolgt die Änderung fortlaufend.

Gleichzeitiges Betätigen der **[OK]**- und **[ESC]**-Tasten für mehr als 5 s bewirkt einen Rücksprung ins Grundmenü. Dabei wird die Menüsprache auf "Englisch" umgeschaltet.

Ca. 60 Minuten nach der letzten Tastenbetätigung wird ein automatischer Rücksprung in die Messwertanzeige ausgelöst. Dabei gehen die noch nicht mit **[OK]** bestätigten Werte verloren.

Einschaltphase

Nach dem Einschalten führt der VEGAFLEX 83 einen kurzen Selbsttest durch, dabei wird die Gerätesoftware überprüft.

Das Ausgangssignal gibt während der Einschaltphase ein Ausfallsignal aus.

Während des Startvorgangs werden auf dem Anzeige- und Bedienmodul folgende Informationen angezeigt:

- Gerätetyp
- Gerätename
- Softwareversion (SW-Ver)
- Hardwareversion (HW-Ver)

Messwertanzeige

Mit der Taste [->] können Sie zwischen drei verschiedenen Anzeigemodi wechseln.

In der ersten Ansicht wird der ausgewählte Messwert in großer Schrift angezeigt.

In der zweiten Ansicht werden der ausgewählte Messwert und eine entsprechende Bargraph-Darstellung angezeigt.

In der dritten Ansicht werden der ausgewählte Messwert sowie ein zweiter auswählbarer Wert, z. B. der Temperaturwert, angezeigt.

• • • •

6.4 Parametrierung - Schnellinbetriebnahme

Schnellinbetriebnahme

Um den Sensor schnell und vereinfacht an die Messaufgabe anzupassen, wählen Sie im Startbild des Anzeige- und Bedienmoduls den Menüpunkt "*Schnellinbetriebnahme*".

Die folgenden Schritte der Schnellinbetriebnahme sind auch in der "Erweiterten Bedienung" erreichbar.

- Geräteadresse
- Messstellenname
- Mediumtyp (optional)
- Anwendung
- Max.-Abgleich
- Min.-Abgleich
- Störsignalausblendung

Die Beschreibung der einzelnen Menüpunkte finden Sie nachfolgend in Kapitel "*Parametrierung - Erweiterte Bedienung*".

6.5 Parametrierung - Erweiterte Bedienung

Bei anwendungstechnisch anspruchsvollen Messstellen können Sie in der "*Erweiterten Bedienung*" weitergehende Einstellungen vornehmen.

Schnell-Inbetriebnahne Erweiterte Bedienung

Hauptmenü

Das Hauptmenü ist in fünf Bereiche mit folgender Funktionalität aufgeteilt:

Inbetriebnahme Display Diagnose Weitere Einstellungen Info

Inbetriebnahme: Einstellungen, z. B. zu Messstellenname, Medium, Anwendung, Behälter, Abgleich, Signalausgang, Geräteeinheit, Störsignalausblendung, Linearisierungskurve

Display: Einstellungen z. B. zur Sprache, Messwertanzeige, Beleuchtung

Diagnose: Informationen z. B. zu Gerätestatus, Schleppzeiger, Messsicherheit, Simulation, Echokurve

Weitere Einstellungen: Reset, Datum/Uhrzeit, Reset, Kopierfunktion Info: Gerätename, Hard- und Softwareversion, Kalibrierdatum, Gerätemerkmale

Hinweis:

Zur optimalen Einstellung der Messung sollten die einzelnen Untermenüpunkte im Hauptmenüpunkt "Inbetriebnahme" nacheinander ausgewählt und mit den richtigen Parametern versehen werden. Halten Sie die Reihenfolge möglichst ein.

Die Vorgehensweise wird nachfolgend beschrieben.

Folgende Untermenüpunkte sind verfügbar:

Inbetriebnahme Geräteadresse Messstellenname Einheiten Sondenlänge Anwendung Inbetriebnahme Abgleich Füllstand Abgleich Trennschicht Störsignalausblendung Dänpfung Linearisierung

Die Untermenüpunkte sind nachfolgend beschrieben.

6.5.1 Inbetriebnahme

Geräteadresse

Jedem Modbus-Gerät muss eine Adresse zugewiesen werden. Jede Adresse darf in einem Modbus- bzw. Levelmaster-Netz nur einmal vergeben werden. Nur bei korrekt eingestellter Adresse wird der Sensor vom Leitsystem erkannt.

- Zugelassener Adressbereich Modbus 0 ... 247
- Zugelassener Adressbereich Levelmaster 0 ... 31

Im Auslieferungszustand werkseitig ist die Modbus-Adresse 246 und die Levelmaster-Adresse 31 eingestellt. Damit ist werkseitig die Softwareadressierung möglich.

Die Adresseinstellung erfolgt wahlweise über:

Die Adresswahlschalter im Elektronikraum des Gerätes (Hardwareadressierung)

- Das Anzeige- und Bedienmodul (Softwareadressierung)
- PACTware/DTM (Softwareadressierung)

Hardwareadressierung

Die Hardwareadressierung ist wirksam, wenn mit den Adresswahlschaltern auf dem Elektronikeinsatz des VEGAFLEX 83 eine Modbus-Adresse von 0 ... 245 eingestellt wird. Damit ist die Softwareadressierung unwirksam, es gilt die eingestellte Hardwareadresse (Levelmaster-Adressen: 0 ... 30)

Softwareadressierung

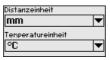
Die Softwareadressierung ist wirksam, wenn mit den Adresswahlschaltern am Gerät die Modbus-Adresse 246 oder größer eingestellt wird (Levelmaster-Adresse: 31).

Information:

Detaillierte Informationen zur Einstellung der Geräteadresse finden Sie im Kapitel "*An die Spannungsversorgung anschließen*"

Messstellenname

Hier können Sie einen passenden Messstellennamen vergeben. Drücken Sie die "*OK*"-Taste, um die Bearbeitung zu starten. Mit der "+"-Taste ändern Sie das Zeichen und mit "->"-Taste springen Sie eine Stelle weiter.


Sie können Namen mit maximal 19 Zeichen eingeben. Der Zeichenvorrat umfasst:

- Großbuchstaben von A ... Z
- Zahlen von 0 ... 9
- Sonderzeichen + / _ Leerzeichen

Einheiten

In diesem Menüpunkt wählen Sie die Distanzeinheit und die Temperatureinheit.

Bei den Distanzeinheiten können Sie aus m, mm und ft wählen. Bei den Temperatureinheiten können Sie aus °C, °F und K wählen.

Sondenlänge

In diesem Menüpunkt können Sie die Sondenlänge eingeben oder automatisch vom Sensorsystem ermitteln lassen.

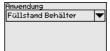
Wenn Sie bei der Auswahl "Ja" auswählen, wird die Sondenlänge automatisch ermittelt. Wenn Sie "Nein" auswählen, können Sie die Sondenlänge manuell eingeben.

Anwendung - Mediumtyp

In diesem Menüpunkt können Sie auswählen, welchen Mediumtyp Sie messen wollen. Sie können wählen zwischen Flüssigkeit oder Schüttgut.

Anwendung - Anwendung

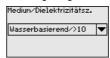
In diesem Menüpunkt können Sie die Anwendung auswählen. Sie können zwischen Füllstandmessung und Trennschichtmessung wählen. Sie können außerdem zwischen Messung im Behälter oder im Bypass- oder Standrohr wählen.



Hinweis:

Die Auswahl der Anwendung hat großen Einfluss auf die weiteren Menüpunkte. Beachten Sie bei der weiteren Parametrierung, dass einzelne Menüpunkte nur optional vorhanden sind.

Sie haben die Möglichkeit, den Demonstrationsmodus zu wählen. Dieser Modus eignet sich ausschließlich für Test- und Vorführzwecke. In diesem Modus ignoriert der Sensor die Parameter der Anwendung und reagiert sofort auf jede Veränderung.



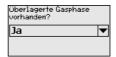
Anwendung - Medium, Dielektrizitätszahl

In diesem Menüpunkt können Sie den Mediumtyp (Medium) definieren

Dieser Menüpunkt ist nur verfügbar, wenn Sie unter dem Menüpunkt "Anwendung" Füllstandmessung ausgewählt haben.

Sie können zwischen folgenden Mediumarten wählen:

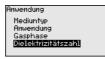
Dielektrizitäts- zahl	Mediumtyp	Beispiele
> 10	Wasserbasieren- de Flüssigkeiten	Säuren, Basen, Wasser
3 10	Chemische Ge- mische	Chlorbenzol, Nitrolack, Anilin, Isocyanat, Chloroform


Dielektrizitäts- zahl	Mediumtyp	Beispiele
< 3	Kohlenwasser- stoffe	Lösemittel, Öle, Flüssiggas

Anwendung - Gasphase

Dieser Menüpunkt ist nur verfügbar, wenn Sie unter dem Menüpunkt "Anwendung" Trennschichtmessung ausgewählt haben. In diesem Menüpunkt können Sie eingeben, ob in Ihrer Anwendung eine überlagerte Gasphase vorliegt.

Stellen Sie die Funktion nur dann auf "Ja", wenn die Gasphase dauerhaft vorhanden ist.



Anwendung - Dielektrizitätszahl

Dieser Menüpunkt ist nur verfügbar, wenn Sie unter dem Menüpunkt "Anwendung" Trennschichtmessung ausgewählt haben. In diesem Menüpunkt können Sie eingeben, welche Dielektrizitätszahl das obere Medium hat.

Sie können die Dielektrizitätszahl des oberen Mediums direkt eingeben oder vom Gerät ermitteln lassen.

Wenn Sie die Dielektrizitätszahl ermitteln lassen wollen, müssen Sie dazu die gemessene bzw. bekannte Distanz zur Trennschicht eingeben.

•

Hinweis:

Die Dielektrizitätszahl kann nur dann zuverlässig ermittelt werden, wenn zwei unterschiedliche Medien und eine ausreichend große Trennschicht vorhanden sind.

Max.-Abgleich Füllstand

In diesem Menüpunkt können Sie den Max.-Abgleich für den Füllstand eingeben. Bei einer Trennschichtmessung ist dies der maximale Gesamtfüllstand.

Den gewünschten Prozentwert mit [+] einstellen und mit [OK] speichern.

Geben Sie zum Prozentwert den passenden Distanzwert in Meter für den vollen Behälter ein. Die Distanz bezieht sich auf die Sensorbezugsebene (Dichtfläche des Prozessanschlusses). Beachten Sie dabei, dass der maximale Füllstand unterhalb der Blockdistanz liegen muss

Min.-Abgleich Füllstand

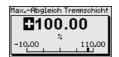
In diesem Menüpunkt können Sie den Min.-Abgleich für den Füllstand eingeben. Bei einer Trennschichtmessung ist dies der minimale Gesamtfüllstand.

Stellen Sie den gewünschten Prozentwert mit [+] ein und speichern mit [OK].

Geben Sie zum Prozentwert den passenden Distanzwert in Meter für den leeren Behälter ein (z. B. Distanz vom Flansch bis zum Sondenende). Die Distanz bezieht sich auf die Sensorbezugsebene (Dichtfläche des Prozessanschlusses).

Max.-Abgleich Trennschicht

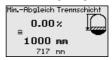
Dieser Menüpunkt ist nur verfügbar, wenn Sie unter dem Menüpunkt "Anwendung" Trennschichtmessung ausgewählt haben.



Geben Sie den gewünschten Prozentwert für den Max.-Abgleich ein.

Alternativ haben Sie die Möglichkeit, den Abgleich der Füllstandmessung auch für die Trennschicht zu übernehmen.

Geben Sie passend zum Prozentwert den entsprechenden Distanzwert in Meter für die Oberfläche des oberen Mediums ein.



Min.-Abgleich Trennschicht

Dieser Menüpunkt ist nur verfügbar, wenn Sie unter dem Menüpunkt "Anwendung" Trennschichtmessung ausgewählt haben.

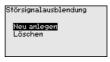
Geben Sie den gewünschten Prozentwert für den Min.-Abgleich (Trennschicht) ein.

Geben Sie passend zum Prozentwert der Trennschicht den entsprechenden Distanzwert in Meter für die Trennschicht ein.

Störsignalausblendung

Folgende Gegebenheiten verursachen Störreflexionen und können die Messung beeinträchtigen:

- Hohe Stutzen
- Behältereinbauten, wie Verstrebungen



Hinweis:

Eine Störsignalausblendung erfasst, markiert und speichert diese Störsignale, damit sie für die Füllstand- und Trennschichtmessung nicht mehr berücksichtigt werden. Wir empfehlen generell, eine Störsignalausblendung durchzuführen, um die größtmögliche Genauigkeit zu erreichen. Dies sollte bei möglichst geringem Füllstand erfolgen, damit alle evtl. vorhandenen Störreflexionen erfasst werden können.

Gehen Sie wie folgt vor:

Wählen Sie zuerst, ob die Messsonde unbedeckt oder bedeckt ist.

Wenn die Messsonde bedeckt ist, geben Sie die tatsächliche Distanz vom Sensor bis zur Oberfläche des Mediums ein.

Alle in diesem Bereich vorhandenen Störsignale werden nun vom Sensor erfasst und abgespeichert.

Beachten Sie, dass bei bedeckter Messsonde nur Störsignale im unbedeckten Bereich der Messsonde erfasst werden.

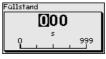
•

Hinweis:

Überprüfen Sie die Distanz zur Mediumoberfläche, da bei einer falschen (zu großen) Angabe der aktuelle Füllstand als Störsignal abgespeichert wird. Somit kann in diesem Bereich der Füllstand nicht mehr erfasst werden.

Ist im Sensor bereits eine Störsignalausblendung angelegt worden, so erscheint bei Anwahl "Störsignalausblendung" folgendes Menüfenster:

Das Gerät führt automatisch eine Störsignalausblendung durch, sobald die Messsonde unbedeckt ist. Die Störsignalausblendung wird dabei iedesmal aktualisiert.


Der Menüpunkt "Löschen" dient dazu, eine bereits angelegte Störsignalausblendung komplett zu löschen. Dies ist sinnvoll, wenn die angelegte Störsignalausblendung nicht mehr zu den messtechnischen Gegebenheiten des Behälters passt.

Dämpfung

Zur Dämpfung von prozessbedingten Messwertschwankungen stellen Sie in diesem Menüpunkt eine Integrationszeit von 0 ... 999 s ein.

Wenn Sie unter dem Menüpunkt "Anwendung" Trennschichtmessung ausgewählt haben, können Sie die Dämpfung für den Füllstand und die Trennschicht gesondert einstellen.

Die Werkseinstellung ist eine Dämpfung von 0 s.

Linearisierung

Eine Linearisierung ist bei allen Behältern erforderlich, bei denen das Behältervolumen nicht linear mit der Füllstandhöhe ansteigt - z. B. bei einem liegenden Rundtank oder Kugeltank, wenn die Anzeige oder Ausgabe des Volumens gewünscht ist. Für diese Behälter sind entsprechende Linearisierungskurven hinterlegt. Sie geben das Verhältnis zwischen prozentualer Füllstandhöhe und dem Behältervolumen an.

Die Linearisierung gilt für die Messwertanzeige und den Ausgang. Durch Aktivierung der passenden Kurve wird das prozentuale Behältervolumen korrekt angezeigt. Falls das Volumen nicht in Prozent, sondern beispielsweise in Liter oder Kilogramm angezeigt werden soll, kann zusätzlich eine Skalierung im Menüpunkt "Display" eingestellt werden.

Warnung:

Wird eine Linearisierungskurve gewählt, so ist das Messsignal nicht mehr zwangsweise linear zur Füllhöhe. Dies ist vom Anwender insbesondere bei der Einstellung des Schaltpunktes am Grenzsignalgeber zu berücksichtigen.

Im Folgenden müssen Sie die Werte für Ihren Behälter eingeben, z.B. die Behälterhöhe und die Stutzenkorrektur.

Geben Sie bei unlinearen Behälterformen die Behälterhöhe und die Stutzenkorrektur ein.

Bei der Behälterhöhe müssen Sie die Gesamthöhe des Behälters eingeben.

Bei der Stutzenkorrektur müssen Sie die Höhe des Stutzens oberhalb der Behälteroberkante eingeben. Wenn der Stutzen tiefer liegt als die Behälteroberkante, kann dieser Wert auch negativ sein.

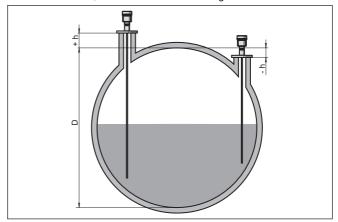
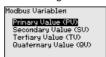


Abb. 16: Behälterhöhe und Stutzenkorrekturwert

- D Behälterhöhe
- +h Positiver Stutzenkorrekturwert
- -h Negativer Stutzenkorrekturwert

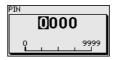


Modbus-Variablen


In diesem Menüpunkt wurden alle Modbus-Variablen der Ausgänge zusammengefasst.

Primary Value ... Quarternary Value

In den Menüpunkten "*Primary Value*" bis "*Quarternary Value*" legen Sie fest, auf welche Messgröße sich der Ausgang bezieht.


Bedienung sperren/freigeben

Im Menüpunkt "Bedienung sperren/freigeben" schützen Sie die Sensorparameter vor unerwünschten oder unbeabsichtigten Änderungen. Die PIN wird dabei dauerhaft aktiviert/deaktiviert.

Bei aktiver PIN sind nur noch folgende Bedienfunktionen ohne PIN-Eingabe möglich:

- Menüpunkte anwählen und Daten anzeigen
- Daten aus dem Sensor in das Anzeige- und Bedienmodul einlesen

Vorsicht:

Bei aktiver PIN ist die Bedienung über PACTware/DTM sowie über andere Systeme ebenfalls gesperrt.

Die PIN im Auslieferungszustand lautet 0000.

Rufen Sie unsere Serviceabteilung an, falls Sie die PIN geändert und vergessen haben.

6.5.2 Display

Im Hauptmenüpunkt "*Display*" sollten zur optimalen Einstellung der Displayoptionen die einzelnen Untermenüpunkte nacheinander ausgewählt und mit den richtigen Parametern versehen werden. Die Vorgehensweise wird nachfolgend beschrieben.

Folgende Untermenüpunkte sind verfügbar:

Die Untermenüpunkte sind nachfolgend beschrieben.

Sprache des Menüs

Dieser Menüpunkt ermöglicht Ihnen die Einstellung der gewünschten Landessprache.

Der Sensor ist im Auslieferungszustand auf Englisch eingestellt.

Anzeigewert 1

In diesem Menüpunkt definieren Sie die Anzeige des Messwertes auf dem Display. Dabei können Sie zwei verschiedene Messwerte anzeigen. In diesem Menüpunkt definieren Sie den Messwert 1.

Die Werkseinstellung für den Anzeigewert 1 ist "Füllhöhe Füllstand".

Anzeigewert 2

In diesem Menüpunkt definieren Sie die Anzeige des Messwertes auf dem Display. Dabei können Sie zwei verschiedene Messwerte anzeigen. In diesem Menüpunkt definieren Sie den Messwert 2.

Die Werkseinstellung für den Anzeigewert 2 ist die Elektroniktemperatur.

Anzeigeformat

In diesem Menüpunkt definieren Sie das Anzeigeformat des Messwertes auf dem Display. Sie können für die zwei verschiedenen Anzeigewerte unterschiedliche Anzeigeformate festlegen.

Sie können damit definieren, mit wievielen Nachkommastellen der Messwert auf dem Display angezeigt wird.

Die Werkseinstellung für das Anzeigeformat ist "Automatisch".

Beleuchtung

Die integrierte Hintergrundbeleuchtung ist über das Bedienmenü abschaltbar. Die Funktion ist von der Höhe der Betriebsspannung abhängig, siehe "*Technische Daten*".

Zur Erhaltung der Gerätefunktion wird die Beleuchtung bei nicht ausreichender Spannungsversorgung vorübergehend abgeschaltet.

Im Auslieferungszustand ist die Beleuchtung eingeschaltet.

6.5.3 Diagnose

Gerätestatus

In diesem Menüpunkt wird der Gerätestatus angezeigt.

Wenn das Gerät ein Ausfallsignal ausgibt, können Sie an dieser Stelle detaillierte Informationen zur Störungsursache bekommen.

Schleppzeiger Distanz

Im Sensor werden der jeweils minimale und maximale Messwert gespeichert. Im Menüpunkt "Schleppzeiger Distanz" werden die beiden Werte angezeigt.

Wenn Sie unter dem Menüpunkt "Inbetriebnahme - Anwendung" Trennschichtmessung ausgewählt haben, werden zu den Schleppzeigerwerten der Füllstandmessung zusätzlich die Schleppzeigerwerte der Trennschichtmessung angezeigt.

Distanz zum F	üllstand	
Min.	68	mm
Max.	265	mm
Distanz zur T	rennschid	ht
Min.	132	mm
Max.	322	mm

In einem weiteren Fenster können Sie für beide Schleppzeigerwerte separat ein Reset durchführen.

Schleppzeiger Messsicherheit

Im Sensor werden der jeweils minimale und maximale Messwert gespeichert. Im Menüpunkt "Schleppzeiger Messsicherheit" werden die beiden Werte angezeigt.

Die Messung kann durch die Prozessbedingungen beeinflusst werden. In diesem Menüpunkt wird die Messsicherheit der Füllstandmessung in mV angezeigt. Je höher der Wert ist, desto sicherer funktioniert die Messung.

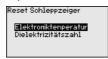
Wenn Sie unter dem Menüpunkt "Inbetriebnahme - Anwendung" Trennschichtmessung ausgewählt haben, werden zu den Schleppzeigerwerten der Füllstandmessung zusätzlich die Schleppzeigerwerte der Trennschichtmessung angezeigt.


```
Messsicherheit Füllstand
Min. 1 nV
Max. 279 nV
Messsicherheit Trennschicht
Min. 1 nV
Max. 316 nV
```

In einem weiteren Fenster können Sie für beide Schleppzeigerwerte separat ein Reset durchführen.

Schleppzeiger weitere

Im Sensor werden der jeweils minimale und maximale Messwert gespeichert. Im Menüpunkt "Schleppzeiger weitere" werden die Werte angezeigt.


In diesem Menüpunkt können Sie die Schleppzeigerwerte der Elektroniktemperatur sowie der Dielektrizitätszahl anzeigen.

Elektronil	ktemperatur
Min.	27.28 °C
Max.	28.84°C
Dielektriz	ritätszahl
Min.	1.00
Max.	1.00

In einem weiteren Fenster können Sie für beide Schleppzeigerwerte separat ein Reset durchführen.

Information:

Wenn einer der Anzeigewerte blinkt, liegt aktuell kein gültiger Wert vor.

Echokurve

Der Menüpunkt "Echokurve" stellt die Signalstärke der Echos über den Messbereich in V dar. Die Signalstärke ermöglicht eine Beurteilung der Qualität der Messung.

Mit den folgenden Funktionen können Sie Teilbereiche der Echokurve vergrößern.

- "X-Zoom": Lupenfunktion für die Messentfernung
- "Y-Zoom": 1-, 2-, 5- und 10-fache Vergrößerung des Signals in "V"
- "Unzoom": Rücksetzen der Darstellung auf den Nennmessbereich mit einfacher Vergrößerung

Simulation

In diesem Menüpunkt simulieren Sie Messwerte über den Ausgang. Damit lässt sich der Signalweg, z. B. über nachgeschaltete Anzeigegeräte oder die Eingangskarte des Leitsystems testen.

Wählen Sie die gewünschte Simulationsgröße aus und stellen Sie den gewünschten Zahlenwert ein.

Um die Simulation zu deaktivieren, drücken Sie die [ESC]-Taste.

Information:

60 Minuten nach Aktivierung der Simulation wird die Simulation automatisch abgebrochen.

Echokurvenspeicher

Mit dem Menüpunkt "Inbetriebnahme" können Sie die Echokurve zum Zeitpunkt der Inbetriebnahme zu speichern. Generell ist dies empfehlenswert, zur Nutzung der Asset-Management-Funktionalität sogar erforderlich. Die Speicherung sollte bei möglichst geringem Füllstand erfolgen.

Damit können Sie Signalveränderungen über die Betriebszeit erkennen. Mit der Bediensoftware PACTware und dem PC kann die hochaufgelöste Echokurve angezeigt und genutzt werden, um die Echokurve der Inbetriebnahme mit der aktuellen Echokurve zu vergleichen.

Echokurvenspeicher Echokurve der Inbetriebnahme speichern?

Die Funktion "Echokurvenspeicher" ermöglicht, Echokurven der Messung zu speichern.

Unter dem Unter-Menüpunkt "Echokurvenspeicher" können Sie die aktuelle Echokurve speichern.

Die Einstellung für die Parameter zur Aufzeichnung der Echokurve und die Einstellungen der Echokurve können Sie in der Bediensoftware PACTware vornehmen.

Mit der Bediensoftware PACTware und dem PC kann die hochaufgelöste Echokurve später angezeigt und genutzt werden, um die Qualität der Messung zu beurteilen.

Echokurvenspeicher Aktuelle Echokurve speichern?

6.5.4 Weitere Einstellungen

Datum/Uhrzeit

In diesem Menüpunkt wird die interne Uhr des Sensors eingestellt.

Reset Bei einem Reset werden bestimmte vom Anwender durchgeführte Parametereinstellungen zurückgesetzt.

Hinweis:

Uhrzeit

Nach diesem Menüfenster wird der Resetvorgang durchgeführt. Es folgt keine weitere Sicherheitsabfrage.

Folgende Resetfunktionen stehen zur Verfügung:

Auslieferungszustand: Wiederherstellen der Parametereinstellungen zum Zeitpunkt der Auslieferung werkseitig inkl. der auftragsspezifischen Einstellungen. Eine angelegte Störsignalausblendung, frei programmierte Linearisierungskurve sowie der Messwertspeicher werden gelöscht.

Basiseinstellungen: Zurücksetzen der Parametereinstellungen inkl. Spezialparameter auf die Defaultwerte (Voreinstellungen) des jeweiligen Gerätes. Eine angelegte Störsignalausblendung, frei programmierte Linearisierungskurve sowie der Messwertspeicher werden gelöscht.

Die folgende Tabelle zeigt die Defaultwerte des Gerätes. Je nach Geräteausführung oder Anwendung sind nicht alle Menüpunkte verfügbar bzw. unterschiedlich belegt:

Menü - Inbetriebnahme

Menüpunkt	Defaultwert	
Bedienung sperren	Freigegeben	
Messstellenname	Sensor	
Einheiten	Distanzeinheit: auftragsspezifisch	
	Temperatureinheit: auftragsspezifisch	
Sondenlänge	Länge der Messsonde werkseitig	
Mediumtyp	Flüssigkeit	
Anwendung	Füllstand im Behälter	
Medium, Dielektrizitätszahl	Wasserbasierend, > 10	
Überlagerte Gasphase	Ja	
Dielektrizitätszahl, oberes Medium (TS)	1,5	
Rohrinnendurchmesser	200 mm	
MaxAbgleich - Füllstand	100 %	
MaxAbgleich - Füllstand	Distanz: 0,000 m(d) - Blockdistanzen beachten	
MinAbgleich - Füllstand	0 %	
MinAbgleich - Füllstand	Distanz: Sondenlänge - Blockdistanzen be- achten	
Abgleich der Füllstandmessung übernehmen?	Nein	
MaxAbgleich - Trennschicht	100 %	
MaxAbgleich - Trennschicht	Distanz: 0,000 m(d) - Blockdistanzen beachten	
MinAbgleich - Trennschicht	0 %	
MinAbgleich - Trennschicht	Distanz: Sondenlänge - Blockdistanzen beachten	

Menüpunkt	Defaultwert
Integrationszeit - Füllstand	0,0 s
Integrationszeit - Trennschicht	0,0 s
Linearisierungstyp	Linear
Linearisierung - Stutzenkorrektur	0 mm
Linearisierung - Behälterhöhe	Sondenlänge

Menü - Display

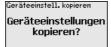
Menüpunkt	Defaultwert
Sprache	Ausgewählte Sprache
Anzeigewert 1	Füllhöhe Füllstand
Anzeigewert 2	Elektroniktemperatur
Beleuchtung	Eingeschaltet

Menü - Diagnose

Menüpunkt	Defaultwert
Statussignale - Funktionskontrolle	Eingeschaltet
Statussignale - Außerhalb der Spezifikation	Ausgeschaltet
Statussignale - Wartungsbedarf	Ausgeschaltet
Gerätespeicher - Echokurvenspeicher	Gestoppt
Gerätespeicher - Messwertspeicher	Gestartet
Gerätespeicher - Messwertspeicher - Messwerte	Distanz Füllstand, Prozentwert Füllstand, Messsicherheit Füllstand, Elektroniktemperatur
Gerätespeicher - Messwertspeicher - Aufzeichnung im Zeitraster	3 min.
Gerätespeicher - Messwertspeicher - Aufzeichnung bei Messwertdifferenz	15 %
Gerätespeicher - Messwertspeicher - Start bei Messwert	Nicht aktiv
Gerätespeicher - Messwertspeicher - Stopp bei Messwert	Nicht aktiv
Gerätespeicher - Messwertspeicher - Aufzeichnung stoppen, wenn Speicher voll	Nicht aktiv

Menü - Weitere Einstellungen

Menüpunkt	Defaultwert
PIN	0000
Datum	Aktuelles Datum
Uhrzeit	Aktuelle Uhrzeit
Uhrzeit - Format	24 Stunden
Sondentyp	Gerätespezifisch


Geräteeinstellungen kopieren

Mit dieser Funktion werden Geräteeinstellungen kopiert. Folgende Funktionen stehen zur Verfügung:

- Aus Sensor lesen: Daten aus dem Sensor auslesen und in das Anzeige- und Bedienmodul speichern
- In Sensor schreiben: Daten aus dem Anzeige- und Bedienmodul zurück in den Sensor speichern

Folgende Daten bzw. Einstellungen der Bedienung des Anzeige- und Bedienmoduls werden hierbei gespeichert:

- Alle Daten der Menüs "Inbetriebnahme" und "Display"
- Im Menü "Weitere Einstellungen" die Punkte "Reset, Datum/Uhrzeit"
- Spezialparameter

Voraussetzungen

Für eine erfolgreiche Übertragung müssen folgende Voraussetzungen erfüllt sein:

- Die Daten k\u00f6nnen nur auf den gleichen Ger\u00e4tetyp \u00fcbertragen werden, z. B. VEGAFLEX 83
- Es muss sich um den gleichen Sondentyp handeln, z. B. Stabmesssonde
- Die Firmware der beiden Geräte ist identisch

Die kopierten Daten werden in einem EEPROM-Speicher im Anzeigeund Bedienmodul dauerhaft gespeichert und bleiben auch bei Spannungsausfall erhalten. Sie können von dort aus in einen oder mehrere Sensoren geschrieben oder zur Datensicherung für einen eventuellen Elektroniktausch aufbewahrt werden.

Hinweis:

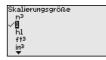
Vor dem Speichern der Daten in den Sensor wird geprüft, ob die Daten zum Sensor passen. Falls die Daten nicht passen, so erfolgt eine Fehlermeldung bzw. wird die Funktion blockiert. Beim Schreiben der Daten in den Sensor wird angezeigt, von welchem Gerätetyp die Daten stammen und welche TAG-Nr. dieser Sensor hatte.

Tipp:

Wir empfehlen, die Geräteeinstellungen zu speichern. Bei einem eventuell notwendigen Elektroniktausch erleichtern die gespeicherten Parametrierdaten den Vorgang.

Skalierung Füllstand


Da die Skalierung sehr umfangreich ist, wurde die Skalierung des Füllstandwertes in zwei Menüpunkte aufgeteilt.



Skalierung Füllstand - Skalierungsgröße

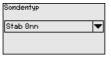
Im Menüpunkt "Skalierungsgröße" definieren Sie die Skalierungsgröße und die Skalierungseinheit für den Füllstandwert auf dem Display, z. B. Volumen in I.

Skalierung Trennschicht

Da die Skalierung sehr umfangreich ist, wurde die Skalierung des Trennschichtwertes in zwei Menüpunkte aufgeteilt.

Skalierung Trennschicht - Skalierungsgröße

Im Menüpunkt "Skalierungsgröße" definieren Sie die Skalierungsgröße und die Skalierungseinheit des Trennschichtwertes auf dem Display, z. B. Volumen in I.

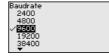


Sondentyp

In diesem Menüpunkt können Sie die Art und die Größe Ihrer Messsonde aus einer Liste aller möglichen Messsonden auswählen. Dies ist erforderlich, um die Elektronik optimal an die Messsonde anzupassen.

Schnittstelle

In diesem Menüpunkt sind alle Einstellungen zu den Geräteschnittstellen zusammengefasst.



Baudrate

In diesem Menüpunkt legen Sie fest, mit welcher Übertragungsgeschwindigkeit der Sensor arbeitet.

Die einstellbare Baudrate liegt im Bereich von 1200 ... 57600.

Datenbits

In diesem Menüpunkt legen Sie fest, wie viele Datenbits pro Baud übertragen werden.

Sie haben die Wahl zwischen 7 und 8 Bits.

Parität

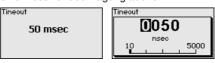
In diesem Menüpunkt können Sie auswählen, ob und wie ein Ergänzungsbit eingefügt wird.

Sie haben die Wahl zwischen gerader oder ungerader Parität oder keiner Veränderung.

Stoppbits

In diesem Menüpunkt können Sie auswählen, wie viele Stoppbits zur Synchronisation eingefügt werden.

Sie haben die Wahl zwischen 1 oder 2 Stoppbits.


Modbus

In diesem Menüpunkt sind alle Einstellungen zu den Geräteschnittstellen zusammengefasst.

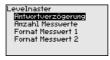
Timeout

In diesem Menüpunkt legen Sie fest, nach welcher Zeit der Sensor eine Messwertübertragung abbricht.

Antwortverzögerung

In diesem Menüpunkt legen Sie fest, mit welcher zeitlichen Antwortverzögerung der Sensor arbeitet.

Floating-Point-Format


In diesem Menüpunkt legen Sie fest, mit welcher Bit-Reihenfolge der Sensor arbeitet.

Levelmaster

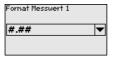
In diesem Menüpunkt sind alle Einstellungen zum Levelmaster zusammengefasst.

Antwortverzögerung

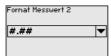
In diesem Menüpunkt legen Sie fest, mit welcher zeitlichen Antwortverzögerung der Sensor arbeitet.

Anzahl Messwerte

In diesem Menüpunkt legen Sie fest, wie viele Messwerte angezeigt werden.


Sie können entweder einen oder zwei Messwerte anzeigen.

Format Messwert 1


In diesem Menüpunkt legen Sie das Anzeigeformat des Displays für Messwert 1 fest.

Format Messwert 2

In diesem Menüpunkt legen Sie das Anzeigeformat des Displays für Messwert 2 fest.

Spezialparameter

In diesem Menüpunkt gelangen Sie in einen geschützten Bereich, um Spezialparameter einzugeben. In seltenen Fällen können einzelne Parameter verändert werden, um den Sensor an besondere Anforderungen anzupassen.

Ändern Sie die Einstellungen der Spezialparameter nur nach Rücksprache mit unseren Servicemitarbeitern.

6.5.5 Info

Gerätename

In diesem Menü lesen Sie den Gerätenamen und die Geräteseriennummer aus.

Geräteversion

In diesem Menüpunkt wird die Hard- und Softwareversion des Sensors angezeigt.

Werkskalibrierdatum

In diesem Menüpunkt wird das Datum der werkseitigen Kalibrierung des Sensors sowie das Datum der letzten Änderung von Sensorparametern über das Anzeige- und Bedienmodul bzw. über den PC angezeigt.

-	-	
Werkskalibrierdatum		
3.	Aug	2012
Letzte	Änderu	ng
29.	Nov	2012

Sensormerkmale

In diesem Menüpunkt werden Merkmale des Sensors wie Zulassung, Prozessanschluss, Dichtung, Messbereich, Elektronik, Gehäuse und weitere angezeigt.

Sensornerkmale Process fitting / Material Thread G4 PN6, DIN 3852-8 / 316L Sensornerkmale Cable entry / Conn ection M20x1.5 / Cable gl and PR black

Beispiele für angezeigte Sensormerkmale.

6.6 Sicherung der Parametrierdaten

Auf Papier

Es wird empfohlen, die eingestellten Daten zu notieren, z. B. in dieser Betriebsanleitung und anschließend zu archivieren. Sie stehen damit für mehrfache Nutzung bzw. für Servicezwecke zur Verfügung.

Im Anzeige- und Bedienmodul

Ist das Gerät mit einem Anzeige- und Bedienmodul ausgestattet, so können die Parametrierdaten darin gespeichert werden. Die Vorgehensweise wird im Menüpunkt "Geräteeinstellungen kopieren" beschrieben.

7 Sensor und Modbus-Schnittstelle mit PACTware in Betrieb nehmen

7.1 Den PC anschließen

An die Sensorelektronik

Der Anschluss des PCs an die Sensorelektronik erfolgt über den Schnittstellenadapter VEGACONNECT.

Parametrierumfang:

Sensorelektronik

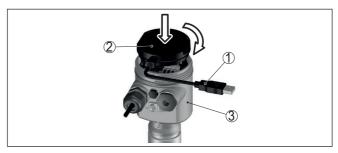


Abb. 17: Anschluss des PCs via Schnittstellenadapter direkt am Sensor

- 1 USB-Kabel zum PC
- 2 Schnittstellenadapter VEGACONNECT
- 3 Sensor

An die RS 485-Leitung

Der Anschluss des PCs an die RS 485-Leitung erfolgt über einen handelsüblichen Schnittstellenadapter RS 485/USB.

Information:

Es ist für die Parametrierung zwingend erforderlich, die Verbindung zur RTU zu trennen.

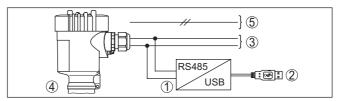


Abb. 18: Anschluss des PCs via Schnittstellenadapter an die RS 485-Leitung

- 1 Schnittstellenadapter RS 485/USB
- 2 USB-Kabel zum PC
- 3 RS 485-Leitung
- 4 Sensor
- 5 Spannungsversorgung

7.2 Parametrierung mit PACTware

Voraussetzungen

Zur Parametrierung des Sensors über einen Windows-PC ist die Konfigurationssoftware PACTware und ein passender Gerätetreiber (DTM) nach dem FDT-Standard erforderlich. Die jeweils aktuelle PACTware-Version sowie alle verfügbaren DTMs sind in einer DTM

Collection zusammengefasst. Weiterhin können die DTMs in andere Rahmenapplikationen nach FDT-Standard eingebunden werden.

i

Hinweis:

Um die Unterstützung aller Gerätefunktionen sicherzustellen, sollten Sie stets die neueste DTM Collection verwenden. Weiterhin sind nicht alle beschriebenen Funktionen in älteren Firmwareversionen enthalten. Die neueste Gerätesoftware können Sie von unserer Homepage herunterladen. Eine Beschreibung des Updateablaufs ist ebenfalls im Internet verfügbar.

Die weitere Inbetriebnahme wird in der Betriebsanleitung "DTM Collection/PACTware" beschrieben, die jeder DTM Collection beiliegt und über das Internet heruntergeladen werden kann. Weiterführende Beschreibungen sind in der Online-Hilfe von PACTware und den DTMs enthalten.

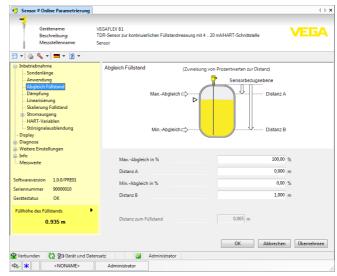


Abb. 19: Beispiel einer DTM-Ansicht

Standard-/Vollversion

Alle Geräte-DTMs gibt es als kostenfreie Standardversion und als kostenpflichtige Vollversion. In der Standardversion sind alle Funktionen für eine komplette Inbetriebnahme bereits enthalten. Ein Assistent zum einfachen Projektaufbau vereinfacht die Bedienung erheblich. Auch das Speichern/Drucken des Projektes sowie eine Import-/Exportfunktion sind Bestandteil der Standardversion.

In der Vollversion ist zusätzlich eine erweiterte Druckfunktion zur vollständigen Projektdokumentation sowie die Speichermöglichkeit von Messwert- und Echokurven enthalten. Weiterhin ist hier ein Tankkalkulationsprogramm sowie ein Multiviewer zur Anzeige und Analyse der gespeicherten Messwert- und Echokurven verfügbar.

Die Standardversion kann auf <u>www.vega.com/downloads</u> und "*Software*" heruntergeladen werden. Die Vollversion erhalten Sie auf einer CD über Ihre zuständige Vertretung.

7.3 Geräteadresse einstellen

Der VEGAFLEX 83 benötigt eine Adresse, um als Slave am Modbus-Kommunikation teilzunehmen. Die Adresseinstellung erfolgt via PC mit PACTware/DTM oder die Modbus RTU.

Die Werkseinstellungen für die Adresse sind:

Mobus: 246Levelmaster: 31

Via PC über Modbus-Elektronik

Starten Sie den Projektassistenten und lassen Sie den Projektbaum aufbauen. Gehen Sie im Projektbaum auf das Symbol für das Modbus-Gateway. Wählen Sie mit der rechten Maustaste "Parameter", dann "Online-Parametrierung" und starten Sie so den DTM für die Modbus-Elektronik.

Gehen Sie auf der Menüleiste des DTMs auf den Listpfeil neben dem Symbol für "Schraubenschlüssel". Wählen Sie den Menüpunkt "Adresse im Gerät ändern" und stellen Sie die gewünschte Adresse ein.

Via PC über RS 485-Leitung

Wählen Sie im Gerätekatalog unter "*Treiber*" die Option "*Modbus Serial*". Doppelklicken Sie diesen Treiber und bauen Sie ihn so in den Projektbaum ein.

Gehen Sie auf den Gerätemanager Ihres PCs und ermitteln Sie, auf welcher COM-Schnittstelle der USB-/RS 485-Adapter liegt. Gehen Sie auf das Symbol "Modbus COM." im Projektbaum. Wählen Sie mit der rechten Maustaste "Parameter" und starten Sie so den DTM für den USB-/RS 485-Adapter. Tragen Sie bei "Grundeinstellung" die COM-Schnittstellen-Nr. aus dem Gerätemanager ein.

Wählen Sie mit der rechten Maustaste "Weitere Funktionen" und "Gerätesuche". Der DTM sucht die angeschlossenen Modbusteilnehmer und baut sie in den Projektbaum ein. Gehen Sie im Projektbaum auf das Symbol für das Modbus-Gateway. Wählen Sie mit der rechten Maustaste "Parameter", dann "Online-Parametrierung" und starten Sie so den DTM für die Modbus-Elektronik.

Gehen Sie auf der Menüleiste des DTMs auf den Listpfeil neben dem Symbol für "Schraubenschlüssel". Wählen Sie den Menüpunkt "Adresse im Gerät ändern" und stellen Sie die gewünschte Adresse ein.

Gehen Sie danach wieder auf Symbol "Modbus COM." im Projektbaum. Wählen Sie mit der rechten Maustaste "Weitere Funktionen" und "DTM-Adressen ändern". Tragen Sie hier die geänderte Adresse des Modbus-Gateways ein.

Via Modbus-RTU

Die Geräteadresse wird in der Register-Nr. 200 des Holding Registers eingestellt (siehe Kapitel "*Modbus-Register*" dieser Betriebsanleitung).

Die Vorgehensweise hängt von der jeweiligen Modbus-RTU und dem Konfigurationstool ab.

Allgemeines

7.4 In Betrieb nehmen mit der Schnellinbetriebnahme

Die Schnellinbetriebnahme ist eine weitere Möglichkeit, um den Sensor zu parametrieren. Sie ermöglicht eine komfortable Eingabe der wichtigsten Daten, um den Sensor schnell an Standardanwendungen anzupassen. Wählen Sie hierzu im Startbildschirm die Funktion "Schnellinbetriebnahme".

Abb. 20: Schnellinbetriebnahme auswählen

- 1 Schnellinbetriebnahme
- 2 Erweiterte Bedienung
- 3 Wartung

Schnellinbetriebnahme

Mit der Schnellinbetriebnahme können Sie den VEGAFLEX 83 in wenigen Schritten für Ihre Anwendung parametrieren. Die assistentgeführte Bedienung beinhaltet die Grundeinstellungen für eine einfache und sichere Inbetriebnahme.

Information:

Ist die Funktion inaktiv, wurde möglicherweise kein Gerät angeschlossen. Überprüfen Sie die Verbindung zum Gerät.

Erweiterte Bedienung

Mit der erweiterten Bedienung parametrieren Sie das Gerät über die übersichtliche Menüstruktur im DTM (Device Type Manager). Diese ermöglicht Ihnen zusätzliche und spezielle Einstellungen über die Schnellinbetriebnahme hinaus.

Wartung

Unter dem Menüpunkt "Wartung" erhalten Sie umfangreiche und wichtige Unterstützung für den Service und die Instandhaltung. Sie

können Diagnosefunktionen abrufen und einen Elektroniktausch oder ein Softwareupdate durchführen.

Schnellinbetriebnahme starten

Klicken Sie auf die Schaltfläche "Schnellinbetriebnahme", um die assistentgeführte Bedienung für eine vereinfachte und sichere Inbetriebnahme zu starten.

7.5 Sicherung der Parametrierdaten

Es wird empfohlen, die Parametrierdaten über PACTware zu dokumentieren bzw. zu speichern. Sie stehen damit für mehrfache Nutzung bzw. für Servicezwecke zur Verfügung.

8 Diagnose und Service

8.1 Instandhalten

Wartung

Bei bestimmungsgemäßer Verwendung ist im Normalbetrieb keine besondere Wartung erforderlich.

Reinigung

Die Reinigung trägt dazu bei, dass Typschild und Markierungen auf dem Gerät sichtbar sind.

Beachten Sie hierzu folgendes:

- Nur Reinigungsmittel verwenden, die Gehäuse, Typschild und Dichtungen nicht angreifen
- Nur Reinigungsmethoden einsetzen, die der Geräteschutzart entsprechen

8.2 Diagnosespeicher

Das Gerät verfügt über mehrere Speicher, die zu Diagnosezwecken zur Verfügung stehen. Die Daten bleiben auch bei Spannungsunterbrechung erhalten.

Messwertspeicher

Bis zu 100.000 Messwerte können im Sensor in einem Ringspeicher gespeichert werden. Jeder Eintrag enthält Datum/Uhrzeit sowie den jeweiligen Messwert. Speicherbare Werte sind z. B.:

- Distanz
- Füllhöhe
- Prozentwert
- Lin.-Prozent
- Skaliert
- Stromwert
- Messsicherheit
- Elektroniktemperatur

Der Messwertspeicher ist im Auslieferungszustand aktiv und speichert alle 3 Minuten Distanz, Messsicherheit und Elektroniktemperatur.

In der Erweiterten Bedienung können Sie die gewünschten Messwerte auswählen.

Die gewünschten Werte und Aufzeichnungsbedingungen werden über einen PC mit PACTware/DTM bzw. das Leitsystem mit EDD festgelegt. Auf diesem Wege werden die Daten ausgelesen bzw. auch zurückgesetzt.

Ereignisspeicher

Bis zu 500 Ereignisse werden mit Zeitstempel automatisch im Sensor nicht löschbar gespeichert. Jeder Eintrag enthält Datum/Uhrzeit, Ereignistyp, Ereignisbeschreibung und Wert. Ereignistypen sind z. B.:

- Änderung eines Parameters
- Ein- und Ausschaltzeitpunkte
- Statusmeldungen (nach NE 107)
- Fehlermeldungen (nach NE 107)

Über einen PC mit PACTware/DTM bzw. das Leitsystem mit EDD werden die Daten ausgelesen.

Echokurvenspeicher

Die Echokurven werden hierbei mit Datum und Uhrzeit und den dazugehörigen Echodaten gespeichert. Der Speicher ist in zwei Bereiche aufgeteilt:

Echokurve der Inbetriebnahme: Diese dient als Referenz-Echokurve für die Messbedingungen bei der Inbetriebnahme. Veränderungen der Messbedingungen im Betrieb oder Anhaftungen am Sensor lassen sich so erkennen. Die Echokurve der Inbetriebnahme wird gespeichert über:

- PC mit PACTware/DTM
- Leitsystem mit EDD
- Anzeige- und Bedienmodul

Weitere Echokurven: In diesem Speicherbereich können bis zu 10 Echokurven im Sensor in einem Ringspeicher gespeichert werden. Die weiteren Echokurve werden gespeichert über:

- PC mit PACTware/DTM
- Leitsystem mit EDD
- Anzeige- und Bedienmodul

8.3 Statusmeldungen

Das Gerät verfügt über eine Selbstüberwachung und Diagnose nach NE 107 und VDI/VDE 2650. Zu den in den folgenden Tabellen angegebenen Statusmeldungen sind detailliertere Fehlermeldungen unter dem Menüpunkt "Diagnose" über das jeweilige Bedientool ersichtlich.

Statusmeldungen

Die Statusmeldungen sind in folgende Kategorien unterteilt:

- Ausfall
- Funktionskontrolle
- Außerhalb der Spezifikation
- Wartungsbedarf

und durch Piktogramme verdeutlicht:

Abb. 21: Piktogramme der Statusmeldungen

- 1 Ausfall (Failure) rot
- 2 Außerhalb der Spezifikation (Out of specification) gelb
- 3 Funktionskontrolle (Function check) orange
- 4 Wartungsbedarf (Maintenance) blau

Ausfall (Failure): Aufgrund einer erkannten Funktionsstörung im Gerät gibt das Gerät ein Ausfallsignal aus.

Diese Statusmeldung ist immer aktiv. Eine Deaktivierung durch den Anwender ist nicht möglich.

Funktionskontrolle (Function check): Am Gerät wird gearbeitet, der Messwert ist vorübergehend ungültig (z. B. während der Simulation).

Diese Statusmeldung ist per Default inaktiv.

Außerhalb der Spezifikation (Out of specification): Der Messwert ist unsicher, da die Gerätespezifikation überschritten ist (z. B. Elektroniktemperatur).

Diese Statusmeldung ist per Default inaktiv.

Wartungsbedarf (Maintenance): Durch externe Einflüsse ist die Gerätefunktion eingeschränkt. Die Messung wird beeinflusst, der Messwert ist noch gültig. Gerät zur Wartung einplanen, da Ausfall in absehbarer Zeit zu erwarten ist (z. B. durch Anhaftungen).

Diese Statusmeldung ist per Default inaktiv.

Failure (Ausfall)

Code	Ursache	Beseitigung	DevSpec
Textmeldung			Diagnosis Bits
F013 Kein Messwert	Sensor detektiert während des Betriebes kein Echo	Montage und/oder Parametrierung prüfen bzw. korrigieren	Bit 0
vorhanden	Antennensystem verschmutzt oder defekt	Prozessbaugruppe bzw. Antenne reinigen oder tauschen	
F017	Abgleich nicht innerhalb der Spe-	Abgleich entsprechend der Grenz-	Bit 1
Abgleichspanne zu klein	zifikation	werte ändern (Differenz zwischen Min. und Max. ≥ 10 mm)	
F025	Stützstellen sind nicht stetig stei-	Linearisierungstabelle prüfen	Bit 2
Fehler in der Linearisierungs- tabelle	gend, z. B. unlogische Wertepaare	Tabelle löschen/neu anlegen	
F036	Fehlgeschlagenes oder abgebro-	Softwareupdate wiederholen	Bit 3
Keine lauffähige	chenes Softwareupdate	Elektronikausführung prüfen	
Software		Elektronik austauschen	
		Gerät zur Reparatur einsenden	
F040	Hardwaredefekt	Elektronik austauschen	Bit 4
Fehler in der Elektronik		Gerät zur Reparatur einsenden	
F041	Seilmesssonde gerissen oder Stab-	Messsonde überprüfen und gege-	Bit 13
Sondenverlust	messsonde defekt	benenfalls austauschen	
F080	Allgemeiner Softwarefehler	Betriebsspannung kurzzeitig tren-	Bit 5
Allgemeiner Soft- warefehler		nen	
F105	Gerät befindet sich noch in der Ein-	Ende der Einschaltphase abwarten	Bit 6
Messwert wird ermittelt	schaltphase, der Messwert konnte noch nicht ermittelt werden	Dauer je nach Ausführung und Parametrierung bis ca. 3 Minuten	
F113 Kommunikations-	Fehler in der internen Gerätekom- munikation	Betriebsspannung kurzzeitig tren- nen	-
fehler		Gerät zur Reparatur einsenden	

Code	Ursache	Beseitigung	DevSpec
Textmeldung			Diagnosis Bits
F125	Temperatur der Elektronik im nicht	Umgebungstemperatur prüfen	Bit 7
Unzulässige	spezifizierten Bereich	Elektronik isolieren	
Elektroniktem- peratur		Gerät mit höherem Temperaturbereich einsetzen	
F260	Fehler in der im Werk durchgeführ-	Elektronik austauschen	Bit 8
Fehler in der Ka- librierung	ten Kalibrierung Fehler im EEPROM	Gerät zur Reparatur einsenden	
F261	Fehler bei der Inbetriebnahme	Inbetriebnahme wiederholen	Bit 9
Fehler in der Ge-	Störsignalausblendung fehlerhaft	Reset wiederholen	
räteeinstellung	Fehler beim Ausführen eines Resets		
F264	Abgleich liegt nicht innerhalb der	Montage und/oder Parametrierung	Bit 10
Einbau-/Inbe-	Behälterhöhe/des Messbereichs	prüfen bzw. korrigieren	
triebnahmefehler	Maximaler Messbereich des Gerätes nicht ausreichend	Gerät mit größerem Messbereich einsetzen	
F265	Sensor führt keine Messung mehr	Betriebsspannung prüfen	Bit 11
Messfunktion ge-	durch	Reset durchführen	
stört	Betriebsspannung zu niedrig	Betriebsspannung kurzzeitig tren- nen	
F266	falsche Betriebsspannung	Betriebsspannung prüfen	Bit 14
Unzulässige Versorgungs- spannung		Anschlussleitungen prüfen	
F267	Sensor kann nicht starten	Elektronik austauschen	-
No executable sensor software		Gerät zur Reparatur einsenden	

Tab. 6: Fehlercodes und Textmeldungen, Hinweise zur Ursache und Beseitigung

Function check

Code Textmeldung	Ursache	Beseitigung	DevSpec State in CMD 48
C700 Simulation	Eine Simulation ist aktiv	Simulation beenden Automatisches Ende nach	"Simulation Active" in "Standardized Status 0"
aktiv		60 Minuten abwarten	

Tab. 7: Fehlercodes und Textmeldungen, Hinweise zur Ursache und Beseitigung

Out of specification

Code	Ursache	Beseitigung	DevSpec
Textmeldung			State in CMD 48
S600 Unzulässige Elektroniktem- peratur	Temperatur der Auswertelektronik im nicht spezifizierten Bereich	Umgebungstemperatur prüfen Elektronik isolieren Gerät mit höherem Temperaturbe- reich einsetzen	Bit 8 von Byte 14 24

Code Textmeldung	Ursache	Beseitigung	DevSpec State in CMD 48
S601 Überfüllung	Füllstandecho im Nahbereich verschwunden	Füllstand reduzieren 100 %-Abgleich: Wert vergrößern Montagestutzen überprüfen Evtl. vorhandene Störsignale im Nahbereich beseitigen Koaxialmesssonde einsetzen	Bit 9 von Byte 14 24
S602 Füllstand inner- halb Suchbereich Kompensations- echo	Kompensationsecho vom Medium überdeckt	100 %-Abgleich: Wert vergrößern	Bit 10 von Byte 14 24
S603 Unzulässige Be- triebsspannung	Betriebsspannung unterhalb des spezifizierten Bereichs	Elektrischen Anschluss prüfen Ggf. Betriebsspannung erhöhen	Bit 11 von Byte 14 24

Tab. 8: Fehlercodes und Textmeldungen, Hinweise zur Ursache und Beseitigung

Maintenance

Code Textmeldung	Ursache	Beseitigung	DevSpec State in CMD 48
M500 Fehler im Auslie- ferungszustand	Beim Reset auf Auslieferungs- zustand konnten die Daten nicht wiederhergestellt werden	Reset wiederholen XML-Datei mit Sensordaten in Sen- sor laden	Bit 0 von Byte 14 24
M501 Fehler in der nicht aktiven Linearisierungs- tabelle	Stützstellen sind nicht stetig steigend, z.B. unlogische Wertepaare	Linearisierungstabelle prüfen Tabelle löschen/neu anlegen	Bit 1 von Byte 14 24
M504 Fehler an einer Geräteschnitt- stelle	Hardwaredefekt	Elektronik austauschen Gerät zur Reparatur einsenden	Bit 4 von Byte 14 24
M505 Kein Messwert	Sensor detektiert während des Betriebes kein Echo	Montage und/oder Parametrierung prüfen und korrigieren	Bit 5 von Byte 14 24
vorhanden	Prozessbaugruppe bzw. Messsonde verschmutzt oder defekt	Prozessbaugruppe bzw. Messsonde reinigen oder austauschen	
M506 Einbau-/Inbe- triebnahmefehler	Fehler bei der Inbetriebnahme	Montage und/oder Parametrierung prüfen und korrigieren Sondenlänge prüfen	Bit 6 von Byte 14 24
M507 Fehler in der Ge- räteeinstellung	Fehler bei der Inbetriebnahme Fehler beim Ausführen eines Resets Störsignalausblendung fehlerhaft	Reset durchführen und Inbetriebnahme wiederholen	Bit 7 von Byte 14 24

Tab. 9: Fehlercodes und Textmeldungen, Hinweise zur Ursache und Beseitigung

8.4 Störungen beseitigen

Verhalten bei Störungen

Es liegt in der Verantwortung des Anlagenbetreibers, geeignete Maßnahmen zur Beseitigung aufgetretener Störungen zu ergreifen.

Störungsbeseitigung

Die ersten Maßnahmen sind:

- Auswertung von Fehlermeldungen
- Überprüfung des Ausgangssignals
- Behandlung von Messfehlern

Weitere umfassende Diagnosemöglichkeiten bieten Ihnen ein Smartphone/Tablet mit der Bedien-App bzw. ein PC/Notebook mit der Software PACTware und dem passenden DTM. In vielen Fällen lassen sich die Ursachen auf diesem Wege feststellen und die Störungen so beseitigen.

Behandlung von Messfehlern

Die unten stehenden Tabellen geben typische Beispiele für anwendungsbedingte Messfehler. Dabei wird unterschieden zwischen Messfehlern bei:

- Konstantem Füllstand
- Befüllung
- Entleerung

Die Bilder in der Spalte "Fehlerbild" zeigen jeweils den tatsächlichen Füllstand gestrichelt und den vom Sensor angezeigten Füllstand als durchgezogene Linie.

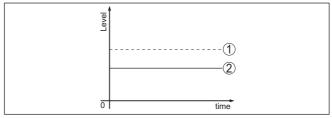


Abb. 22: Die gestrichelte Linie 1 zeigt den tatsächlichen Füllstand, die durchgezogene Linie 2 zeigt den vom Sensor angezeigten Füllstand

•

Hinweis:

Bei konstant ausgegebenem Füllstand könnte die Ursache auch die Störungseinstellung des Ausganges auf "Wert halten" sein.

Bei zu geringem Füllstand könnte die Ursache auch ein zu hoher Leitungswiderstand sein.

Messfehler bei konstantem Füllstand

Fehlerbeschreibung	Ursache	Beseitigung
Messwert zeigt zu geringen	Min/MaxAbgleich nicht korrekt	Min/MaxAbgleich anpassen
bzw. zu hohen Füllstand	Linearisierungskurve falsch	Linearisierungskurve anpassen
5 Sms	Laufzeitfehler (kleiner Messfehler nahe 100 %/großer Fehler nahe 0 %)	Inbetriebnahme wiederholen
Messwert springt Richtung 100 %	Prozessbedingt sinkt die Amplitude des Produktechos	Störsignalausblendung durchführen
Cereal	Störsignalausblendung wurde nicht durchgeführt	
0 100	Amplitude oder Ort eines Störsignals hat sich geändert (z. B. Produktablage- rungen); Störsignalausblendung passt nicht mehr	Ursache der veränderten Störsignale er- mitteln, Störsignalausblendung z. B. mit Ablagerungen durchführen

Messfehler bei Befüllung

Fehlerbeschreibung	Ursache	Beseitigung
Messwert bleibt bei der Befüllung im Bodenbereich stehen	Echo des Sondenendes größer als das Produktecho, z. B. bei Produkten mit $\epsilon_{\rm r}$ < 2,5 ölbasierend, Lösungsmittel etc.	Parameter Medium und Behälterhöhe prüfen, ggf. anpassen
Messwert bleibt bei der Befüllung vorübergehend stehen und springt auf den richtigen Füllstand	Turbulenzen der Mediumoberfläche, schnelle Befüllung	Parameter prüfen, ggf. ändern, z. B. in Dosierbehälter, Reaktor
Messwert springt bei Befüllung sporadisch auf 100 %	Veränderliches Kondensat oder Verschmutzungen an der Messsonde	Störsignalausblendung durchführen
Messwert springt auf ≥ 100 % bzw. 0 m Distanz	Füllstandecho wird im Nahbereich wegen Störsignalen im Nahbereich nicht mehr detektiert. Sensor geht in die Überfüllsicherheit. Es wird der max. Füllstand (0 m Distanz) sowie die Statusmeldung "Überfüllsicherheit" ausgegeben.	Störsignale im Nahbereich beseitigen Einbaubedingungen prüfen Wenn möglich, die Funktion Überfüllsi- cherung abschalten

Messfehler bei Entleerung

Fehlerbeschreibung	Ursache	Beseitigung
Messwert bleibt beim Ent- leeren im Nahbereich stehen	Störsignal größer als Füllstandecho Füllstandecho zu klein	Störsignale im Nahbereich beseitigen Verschmutzungen an der Messsonde beseitigen. Nach Beseitigung der Störsi- gnale muss die Störsignalausblendung gelöscht werden. Neue Störsignalausblendung durch- führen
Messwert bleibt bei Ent- leerung reproduzierbar an einer Stelle stehen	Abgespeicherte Störsignale sind an dieser Stelle größer als das Füllstandecho	Störsignalausblendung löschen Neue Störsignalausblendung durch- führen

Verhalten nach Störungsbeseitigung

Je nach Störungsursache und getroffenen Maßnahmen sind ggf. die in Kapitel "In Betrieb nehmen" beschriebenen Handlungsschritte erneut zu durchlaufen bzw. auf Plausibilität und Vollständigkeit zu überprüfen.

24 Stunden Service-Hotline

Sollten diese Maßnahmen dennoch zu keinem Ergebnis führen, rufen Sie in dringenden Fällen die VEGA Service-Hotline an unter Tel. +49 1805 858550.

Die Hotline steht Ihnen auch außerhalb der üblichen Geschäftszeiten an 7 Tagen in der Woche rund um die Uhr zur Verfügung.

Da wir diesen Service weltweit anbieten, erfolgt die Unterstützung in englischer Sprache. Der Service ist kostenfrei, es fallen lediglich die üblichen Telefongebühren an.

8.5 Elektronikeinsatz tauschen

Bei einem Defekt kann der Elektronikeinsatz durch den Anwender getauscht werden.

Bei Ex-Anwendungen darf nur ein Gerät und ein Elektronikeinsatz mit entsprechender Ex-Zulassung eingesetzt werden.

Falls vor Ort kein Elektronikeinsatz verfügbar ist, kann dieser über die für Sie zuständige Vertretung bestellt werden. Die Elektronikeinsätze sind auf den jeweiligen Sensor abgestimmt und unterscheiden sich zudem im Signalausgang bzw. in der Spannungsversorgung.

Der neue Elektronikeinsatz muss mit den Werkseinstellungen des Sensors geladen werden. Hierzu gibt es folgende Möglichkeiten:

- Im Werk
- Vor Ort durch den Anwender

In beiden Fällen ist die Angabe der Seriennummer des Sensors erforderlich. Die Seriennummer finden Sie auf dem Typschild des Gerätes, im Inneren des Gehäuses sowie auf dem Lieferschein zum Gerät.

Beim Laden vor Ort müssen zuvor die Auftragsdaten vom Internet heruntergeladen werden (siehe Betriebsanleitung "Elektronikeinsatz").

Vorsicht

Alle anwendungsspezifischen Einstellungen müssen neu eingegeben werden. Deshalb müssen Sie nach dem Elektroniktausch eine Neu-Inbetriebnahme durchführen.

Wenn Sie bei der Erst-Inbetriebnahme des Sensors die Daten der Parametrierung gespeichert haben, können Sie diese wieder auf den Ersatz-Elektronikeinsatz übertragen. Eine Neu-Inbetriebnahme ist dann nicht mehr erforderlich.

8.6 Stab auswechseln

Stab auswechseln

Der Stab (Messteil) der Messsonde kann bei Bedarf ausgewechselt werden. Zum Lösen des Messstabes benötigen Sie einen Gabelschlüssel der Schlüsselweite 10.

Vorsicht:

Beachten Sie, dass der polierte Stab der Lebensmittelausführung sehr empfindlich gegen Beschädigungen und Verkratzen ist. Verwenden Sie spezielle Werkzeuge, um eine Beschädigung der Oberfläche zu vermeiden.

- Messstab mit Hilfe eines Gabelschlüssels (SW 10) an den Zweikantflächen lösen, dabei von Hand am Prozessanschluss gegenhalten
- 2. Gelösten Messstab von Hand herausdrehen
- 3. Beiliegenden neuen Dichtungsring über das Gewinde schieben.
- 4. Den neuen Messstab vorsichtig von Hand auf das Gewinde am Prozessanschluss schrauben.
- Von Hand gegenhalten und den Messstab an den Zweikantflächen mit einem Drehmoment von 4,5 Nm (3.32 lbf ft) anziehen.

Abb. 23: Messstab wechseln

1 Dichtungsring

Information:

Halten Sie das angegebene Drehmoment ein, damit die maximale Zugfestigkeit der Verbindung erhalten bleibt.

 Neue Messsondenlänge und evtl. neuen Sondentyp eingeben und danach Abgleich erneut durchführen (siehe dazu "Inbetriebnahmeschritte, Min.-Abgleich durchführen - Max.-Abgleich durchführen").

8.7 Dichtung auswechseln

Dichtung auswechseln

Die Dichtung der Messsonde kann bei Bedarf ausgewechselt werden.

Sie können die Dichtung bei Verschleiß wechseln, oder um die bestehende Dichtung aus Gründen der Beständigkeit gegen eine Dichtung aus einem anderen Werkstoff auszutauschen. Wenn Sie den Prozessanschluss der Messsonde zu Reinigungszwecken abnehmen, müssen Sie ebenfalls eine neue Dichtung verwenden.

Zum Lösen des Messstabes benötigen Sie einen Gabelschlüssel der Schlüsselweite 10.

Hinweis:

Geräte mit 3A-Herstellererklärung müssen speziell abgedichtet werden. Deshalb müssen Sie solche Geräte zum Dichtungswechsel zurück ins Werk schicken.

Es sind drei verschiedene Dichtungssätze verfügbar. Darin enthalten sind die Dichtungen für den Prozessanschluss und den Messstab. Bei segmentierten Stäben sind mehrere Dichtungen für den Messstab enthalten.

Tauschen Sie bei jeder gelösten Verbindung die Dichtung aus.

- EPDM (Freudenberg 70, EPDM 291), -20 ... +130 °C
- FFKM (Kalrez 6221), -20 ... +150 °C
- FEPM (Vi 602 Extreme-ETP, COG), -10 ... +150 °C

Vorsicht:

Beachten Sie, dass der polierte Stab der Lebensmittelausführung sehr empfindlich gegen Beschädigungen und Verkratzen ist. Verwenden Sie spezielle Werkzeuge, um eine Beschädigung der Oberfläche zu vermeiden.

- Messstab mit Hilfe eines Gabelschlüssels (SW 10) an den Zweikantflächen lösen, dabei von Hand am Prozessanschluss gegenhalten
- Gelösten Messstab von Hand herausdrehen
- 3. Beiliegenden neuen Stabdichtungsring (9,25 x 1,78) über das Gewinde des Messstabs schieben.



Abb. 24: Messstab ausbauen

- 1 Dichtungsring (9,25 x 1,78)
- 4. Prozessanschluss mit einem passenden Gabelschlüssel lösen.
- 5. Prozessanschluss von Hand vom Sensor herunterschrauben.
- 6. Alte Prozessdichtung aus dem Prozessanschluss entnehmen.
- 7. Beiliegenden neuen Prozessdichtungsring (15,54 x 2,62) in den Prozessanschluss einlegen.

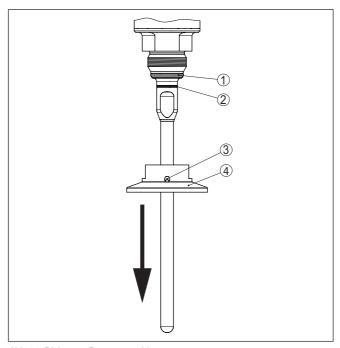


Abb. 25: Dichtung - Prozessanschluss

- 1 Prozessdichtung
- 2 Stabdichtung
- 3 Bohrung zur Leckageerkennung
- 4 Prozessanschluss, z. B. Clamp
- Prozessanschluss von Hand auf das Gewinde des Sensors schrauben.
- 9. Prozessanschluss mit einem passenden Gabelschlüssel mit einem Drehmoment von 20 Nm (14.75 lbf ft) festziehen.
- Den Messstab vorsichtig von Hand in das Gewinde am Prozessanschluss schrauben.
- Von Hand gegenhalten und den Messstab an den Zweikantflächen mit einem Drehmoment von max. 4,5 Nm (3.32 lbf ft) anziehen.

Information:

Halten Sie das angegebene Drehmoment ein, damit die maximale Zugfestigkeit der Verbindung erhalten bleibt.

8.8 Softwareupdate

Zum Update der Gerätesoftware sind folgende Komponenten erforderlich:

- Gerät
- Spannungsversorgung

- Schnittstellenadapter VEGACONNECT
- PC mit PACTware
- Aktuelle Gerätesoftware als Datei

Die aktuelle Gerätesoftware sowie detallierte Informationen zur Vorgehensweise finden Sie im Downloadbereich auf www.vega.com.

Die Informationen zur Installation sind in der Downloaddatei enthalten.

Vorsicht:

Geräte mit Zulassungen können an bestimmte Softwarestände gebunden sein. Stellen Sie deshalb sicher, dass bei einem Softwareupdate die Zulassung wirksam bleibt.

Detallierte Informationen finden Sie im Downloadbereich auf www.vega.com.

8.9 Vorgehen im Reparaturfall

Ein Geräterücksendeblatt sowie detallierte Informationen zur Vorgehensweise finden Sie im Downloadbereich auf unserer Homepage. Sie helfen uns damit, die Reparatur schnell und ohne Rückfragen durchzuführen.

Gehen Sie im Reparaturfall folgendermaßen vor:

- Für jedes Gerät ein Formular ausdrucken und ausfüllen
- Das Gerät reinigen und bruchsicher verpacken
- Das ausgefüllte Formular und eventuell ein Sicherheitsdatenblatt außen auf der Verpackung anbringen
- Adresse für Rücksendung bei der für Sie zuständigen Vertretung erfragen. Sie finden diese auf unserer Homepage.

9 Ausbauen

9.1 Ausbauschritte

Warnung:

Achten Sie vor dem Ausbauen auf gefährliche Prozessbedingungen wie z. B. Druck im Behälter oder Rohrleitung, hohe Temperaturen, aggressive oder toxische Medien etc.

Beachten Sie die Kapitel "Montieren" und "An die Spannungsversorgung anschließen" und führen Sie die dort angegebenen Schritte sinngemäß umgekehrt durch.

9.2 Entsorgen

Das Gerät besteht aus Werkstoffen, die von darauf spezialisierten Recyclingbetrieben wieder verwertet werden können. Wir haben hierzu die Elektronik leicht trennbar gestaltet und verwenden recyclebare Werkstoffe.

WEEE-Richtlinie

Das Gerät fällt nicht in den Geltungsbereich der EU-WEEE-Richtlinie. Nach Artikel 2 dieser Richtlinie sind Elektro- und Elektronikgeräte davon ausgenommen, wenn sie Teil eines anderen Gerätes sind, das nicht in den Geltungsbereich der Richtlinie fällt. Dies sind u. a. ortsfeste Industrieanlagen.

Führen Sie das Gerät direkt einem spezialisierten Recyclingbetrieb zu und nutzen Sie dafür nicht die kommunalen Sammelstellen.

Sollten Sie keine Möglichkeit haben, das Altgerät fachgerecht zu entsorgen, so sprechen Sie mit uns über Rücknahme und Entsorgung.

10 Anhang

10.1 Technische Daten

Allgemeine Daten

316L entspricht 1.4404 oder 1.4435

Werkstoffe, medienberührt

- Prozessanschluss 316L und PEEK

Geräteseitige Prozessdichtung (Stabdurchführung)
 FFKM (Kalrez 6221), EPDM (Freudenberg 70 EPdurchführung)
 DM 291), FEPM (Vi 602 Extreme-ETP, Fa. COG)

- Prozessdichtung Bauseits

- Stab: ø 8 mm (0.315 in), poliert 316L (nur 1.4435), (Basler Norm)

Oberflächengüte¹⁾

Werkstoffe, nicht medienberührt

- Sichtfenster im Gehäusedeckel

- Kunststoffgehäuse Kunststoff PBT (Polyester)

Aluminium-Druckgussgehäuse
 Aluminium-Druckguss AlSi10Mg, pulverbeschichtet

(Basis: Polyester)

Edelstahlgehäuse (Feinguss)Edelstahlgehäuse (elektropoliert)316L

- Dichtung zwischen Gehäuse und Silikon SI 850 R

Gehäusedeckel

(optional)

Kunststoffgehäuse: Polycarbonat (UL746-C gelistet)

Metallgehäuse: Glas2)

- Erdungsklemme 316L

Kabelverschraubung
 PA, Edelstahl, Messing

Dichtung KabelverschraubungVerschlussstopfen Kabelverschrau-PA

bung

Leitende Verbindung Zwischen Erdungsklemme, Prozessanschluss und

Messsonde

Prozessanschlüsse

- Clamp ab 2"

- Rohrverschraubung ab DN 32 PN 40

Gewicht

- Gerätegewicht (je nach Prozessan- ca. 0,8 ... 8 kg (0.176 ... 17.64 lbs)

schluss)

Stab: Ø 8 mm (0.315 in), poliert
 ca. 400 g/m (4.3 oz/ft)

Messsondenlänge L (ab Dichtfläche)

- Stab: ø 8 mm (0.315 in), poliert bis 4 m (13.12 ft) - auch segmentierte Stäbe möglich

¹⁾ Alle medienberührte Teile.

²⁾ Aluminium- Edelstahl-Feinguss- und Ex d-Gehäuse

Ablänggenauigkeit (Stab)
 ±1 mm + 0,05 % der Stablänge

Seitliche Belastung bei Stab: ø 8 mm 10 Nm (7.38 lbf ft)

(0.315 in), poliert

Anzugsmoment für wechselbare Stab- max. 4.5 Nm (3.32 lbf ft)

messsonde (im Prozessanschluss)

Anzugsmoment für NPT-Kabelverschraubungen und Conduit-Rohre
– Kunststoffgehäuse max. 10 Nm (7.376 lbf ft)
– Aluminium-/Edelstahlgehäuse max. 50 Nm (36.88 lbf ft)

Eingangsgröße

Messgröße Füllstand von Flüssigkeiten

Minimale Dielektrizitätszahl des Füllgutes ε, ≥ 1,6

Ausgangsgröße

Ausgang

Physikalische Schicht
 Digitales Ausgangssignal nach Standard EIA-485

- Buspezifikationen Modbus Application Protocol V1.1b3, Modbus over

serial line V1.02

Datenprotokolle
 Modbus RTU, Modbus ASCII, Levelmaster

Max. Übertragungsrate 57,6 Kbit/s

Messgenauigkeit (nach DIN EN 60770-1)

Prozess-Referenzbedingungen nach DIN EN 61298-1

- Temperatur +18 ... +30 °C (+64 ... +86 °F)

- Relative Luftfeuchte 45 ... 75 %

- Luftdruck +860 ... +1060 mbar/+86 ... +106 kPa

(+12.5 ... +15.4 psig)

Montage-Referenzbedingungen

- Mindestabstand zu Einbauten > 500 mm (19.69 in)

- Behälter metallisch, ø 1 m (3.281 ft), zentrische Montage, Pro-

zessanschluss bündig zur Behälterdecke

Medium
 Wasser/Öl (Dielektrizitätszahl ~2,0)³⁾

Montage
 Messsondenende berührt den Behälterboden nicht

Sensorparametrierung Keine Störsignalausblendung durchgeführt

⁵¹⁵¹⁷⁻DE-210913

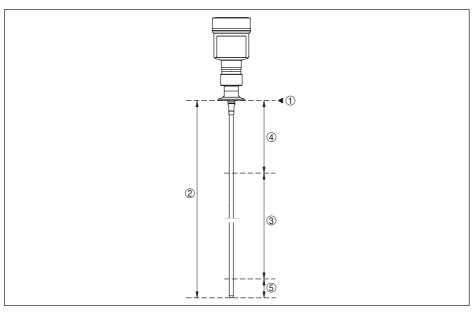


Abb. 26: Messbereiche - VEGAFLEX 83

- Bezugsebene
- 2 Sondenlänge L
- 3 Messbereich (Werksabgleich ist bezogen auf den Messbereich in Wasser)
- Obere Blockdistanz (siehe folgende Diagramme grau markierter Bereich)
- Untere Blockdistanz (siehe folgende Diagramme grau markierter Bereich)

Typische Messabweichung - Trenn- $\pm 5 \text{ mm} (0.197 \text{ in})$

schichtmessung

Typische Messabweichung - Gesamtfüll- Siehe folgende Diagramme

stand Trennschichtmessung

Typische Messabweichung - Füllstand-Siehe folgende Diagramme messung4)5)

51517-DE-210913

Abhängig von den Montagebedingungen können sich Abweichungen ergeben, die durch eine Anpassung des Abgleichs oder einer Veränderung des Messwertoffsets im DTM-Servicemode behoben werden können. Durch eine Störsignalausblendung können die Blockdistanzen optimiert werden.

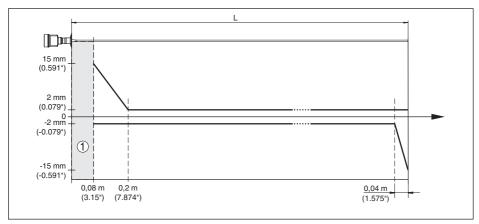


Abb. 27: Messabweichung VEGAFLEX 83 in Stabausführung in Medium Wasser

- 1 Blockdistanz (in diesem Bereich ist keine Messung möglich)
- L Sondenlänge

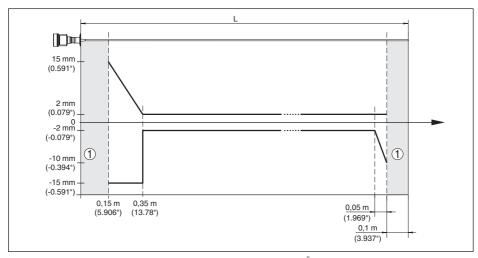


Abb. 28: Messabweichung VEGAFLEX 83 in Stabausführung in Medium Öl

- 1 Blockdistanz (in diesem Bereich ist keine Messung möglich)
- L Sondenlänge

Nichtwiederholbarkeit ≤ ±1 mm

Einflussgrößen auf die Messgenauigkeit

Temperaturdrift - Digitalausgang ±3 mm/10 K bezogen auf den max. Messbereich bzw. max. 10 mm (0.394 in)

Zusätzliche Messabweichung durch elektromagnetische Einstreuungen im Rahmen der EN 61326 $< \pm 10 \text{ mm} (< \pm 0.394 \text{ in})$

Einfluss von überlagertem Gas und Druck auf die Messgenauigkeit

Die Ausbreitungsgeschwindigkeit der Radarimpulse in Gas bzw. Dampf oberhalb des Mediums wird durch hohe Drücke reduziert. Dieser Effekt hängt vom überlagerten Gas bzw. Dampf ab.

Die folgende Tabelle zeigt die dadurch entstehende Messabweichung für einige typische Gase bzw. Dämpfe. Die angegebenen Werte sind bezogen auf die Distanz. Positive Werte bedeuten, dass die gemessene Distanz zu groß ist, negative Werte, dass die gemessene Distanz zu klein ist.

Gasphase	Temperatur	Druck		
		1 bar (14.5 psig)	10 bar (145 psig)	50 bar (725 psig)
Luft	20 °C (68 °F)	0 %	0,22 %	1,2 %
	200 °C (392 °F)	-0,01 %	0,13 %	0,74 %
	400 °C (752 °F)	-0,02 %	0,08 %	0,52 %
Wasserstoff	20 °C (68 °F)	-0,01 %	0,1 %	0,61 %
	200 °C (392 °F)	-0,02 %	0,05 %	0,37 %
	400 °C (752 °F)	-0,02 %	0,03 %	0,25 %
Wasserdampf (Satt-dampf)	100 °C (212 °F)	0,26 %	-	-
	180 °C (356 °F)	0,17 %	2,1 %	-
	264 °C (507 °F)	0,12 %	1,44 %	9,2 %
	366 °C (691 °F)	0,07 %	1,01 %	5,7 %

Messcharakteristiken und Leistungsdaten

Messzykluszeit	< 500 ms
Sprungantwortzeit ⁶⁾	≤3s
Max. Befüll-/Entleergeschwindigkeit	1 m/min

Bei Medien mit hohem Dielektrizitätswert (>10) bis zu 5 m/min.

Umgebungsbedingungen

Umgebungs-, Lager- und Transporttemperatur

- f	-40 +80 °C (-40 +176 °F)
- CSA, Ordinary Location	-40 +60 °C (-40 +140 °F)

Prozessbedingungen

Für die Prozessbedingungen sind zusätzlich die Angaben auf dem Typschild zu beachten. Es gilt der jeweils niedrigste Wert.

Im angegebenen Druck- und Temperaturbereich ist der Messfehler durch die Prozessbedingungen < 1 %.

Prozessdruck -1 ... +16 bar/-100 ... +1600 kPa (-14.5 ... +232 psig),

abhängig vom Prozessanschluss

Behälterdruck bezogen auf FlanschNenndruckstufe
siehe Zusatzanleitung "Flansche nach DIN-EN-ASMEJJS"

⁶⁾ Zeitspanne nach sprunghafter Änderung der Messdistanz um max. 0,5 m bei Flüssigkeitsanwendungen, max. 2 m bei Schüttgutanwendungen, bis das Ausgangssignal zum ersten Mal 90 % seines Beharrungswertes angenommen hat (IEC 61298-2).

Prozesstemperatur (Gewinde- bzw. Flanschtemperatur)

− FFKM (Kalrez 6221) -20 ... +150 °C (-4 ... +302 °F)

- EPDM (Freudenberg 70, EPDM 291) -20 ... +130 °C (-4 ... +266 °F)

- FEPM (Vi 602 Extreme-ETP, Fa. COG) -10 ... +150 °C (14 ... +302 °F)

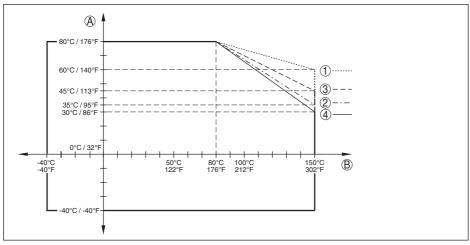


Abb. 29: Umgebungstemperatur - Prozesstemperatur, Standardausführung

- A Umgebungstemperatur
- B Prozesstemperatur (abhängig vom Dichtungswerkstoff)
- 1 Aluminiumgehäuse
- 2 Kunststoffgehäuse
- 3 Edelstahlgehäuse, Feinguss
- 4 Edelstahlgehäuse, elektropoliert

SIP-Prozesstemperatur (SIP = Sterilization in place)

Dampfgeeignete Dichtungen: FFKM (Kalrez 6621) oder EPDM (Freudenberg 70 EPDM 291)

Dampfbeaufschlagung bis 2 h +150 °C (+302 F)

Mechanische Beanspruchung

Vibrationsfestigkeit

- Stabmesssonde 1 g bei 5 ... 200 Hz nach EN 60068-2-6 (Vibration bei

Resonanz) bei Stablänge 50 cm (19.69 in)

Schockfestigkeit

- Stabmesssonde 25 g, 6 ms nach EN 60068-2-27 (mechanischer Schock)

bei Stablänge 50 cm (19.69 in)

Elektromechanische Daten - Ausführung IP67

Optionen der Kabeleinführung

Kabeleinführung
 M20 x 1,5; ½ NPT

Kabelverschraubung
 M20 x 1,5; ½ NPT (Kabel-ø siehe Tabelle unten)

Blindstopfen
 M20 x 1,5; ½ NPT

Verschlusskappe
 ½ NPT

Werkstoff	Werkstoff	Kabeldurchmesser					
Kabelver- schraubung	Dichtungs- einsatz	4,5 8,5 mm	5 9 mm	6 12 mm	7 12 mm	10 14 mm	
PA	NBR	-	•	•	-	•	
Messing, ver- nickelt	NBR	•	•	•	-	-	
Edelstahl	NBR	-	•	•	-	•	

Aderquerschnitt (Federkraftklemmen)

Massiver Draht, Litze
 Litze mit Aderendhülse
 0,2 ... 2,5 mm² (AWG 24 ... 14)
 0,2 ... 1,5 mm² (AWG 24 ... 16)

Integrierte Uhr

Datumsformat Tag.Monat.Jahr

Zeitformat 12 h/24 h

Zeitzone werkseitig CET

Max. Gangabweichung 10,5 min/Jahr

Zusätzliche Ausgangsgröße - Elektroniktemperatur

Bereich -40 ... +85 °C (-40 ... +185 °F)

Auflösung < 0.1 KMessabweichung $\pm 3 \text{ K}$

Verfügbarkeit der Temperaturwerte

Anzeige Über das Anzeige- und BedienmodulAusgabe Über das jeweilige Ausgangssignal

Spannungsversorgung

Betriebsspannung 8 ... 30 V DC
Max. Leistungsaufnahme 520 mW
Verpolungsschutz Integriert

Elektrische Schutzmaßnahmen

Gehäusewerkstoff	Ausführung	Schutzart nach IEC 60529	Schutzart nach NEMA
Kunststoff	Einkammer	IP66/IP67	Type 4X
Aluminium	Einkammer	IP66/IP68 (0,2 bar)	Type 6P
		IP66/IP68 (1 bar)	-
Edelstahl (elektropoliert)	Einkammer	IP66/IP68 (0,2 bar)	Type 6P
Edelstahl (Feinguss)	Einkammer	IP66/IP68 (0,2 bar)	Type 6P
		IP66/IP68 (1 bar)	-

Netze der Überspannungskategorie III

Anschluss des speisenden Netzteils

Einsatzhöhe über Meeresspiegel

- standardmäßig bis 2000 m (6562 ft)

51517-DE-210913

 mit vorgeschaltetem Überspannungs- bis 5000 m (16404 ft) schutz

Verschmutzungsgrad (bei Einsatz mit 4

erfüllter Gehäuseschutzart)

Schutzklasse (IEC 61010-1)

10.2 Gerätekommunikation Modbus

Im Folgenden werden die erforderlichen, gerätespezifischen Details dargestellt. Weitere Informationen zum Modbus finden Sie auf www.modbus.org.

Protokollbeschreibung

Der VEGAFLEX 83 ist gegeignet zum Anschluss an folgende RTUs mit Modbus RTU- oder ASCII-Protokoll.

RTU	Protocol	
ABB Totalflow	Modbus RTU, ASCII	
Bristol ControlWaveMicro	Modbus RTU, ASCII	
Fisher ROC	Modbus RTU, ASCII	
ScadaPack	Modbus RTU, ASCII	
Thermo Electron Autopilot	Modbus RTU, ASCII	

Parameter für die Buskommunikation

Der VEGAFLEX 83 ist mit den Defaultwerten vorbelegt:

Parameter	Configurable Values	Default Value
Baud Rate	1200, 2400, 4800, 9600, 19200, 38400, 57600	9600
Start Bits	1	1
Data Bits	7, 8	8
Parity	None, Odd, Even	None
Stop Bits	1, 2	1
Address range Modbus	1 255	246

Start Bits und Data Bits können nicht verändert werden.

Allgemeine Konfiguration des Hosts

Der Datenaustausch mit Status und Variablen zwischen Feldgerät und Host erfolgt über Register. Hierzu ist eine Konfiguration im Host erforderlich. Gleitkommazahlen mit einfacher Genauigkeit (4 Bytes) nach IEEE 754 werden mit frei wählbarer Anordnung der Datenbytes (Byte transmission order) übertragen. Diese "Byte transmission order" wird im Parameter "Format Code" festgelegt. Damit kennt die RTU die Register des VEGAFLEX 83, die für Variablen und Statusinformationen abzufragen sind.

Format Code	Byte transmission order	
0	ABCD	

Format Code	Byte transmission order	
1	CDAB	
2	DCBA	
3	BADC	

10.3 Modbus-Register

Holding Register

Die Holding-Register bestehen aus 16 bit. Sie können gelesen und beschrieben werden. Vor jedem Befehl wird die Adresse (1 Byte), nach jedem Befehl ein CRC (2 Byte) gesendet.

Register Name	Register Number	Туре	Configurable Values	Default Va- lue	Unit
Address	200	Word	1 255	246	_
Baud Rate	201	Word	1200, 2400, 4800, 9600, 19200, 38400, 57600	9600	_
Parity	202	Word	0 = None, 1 = Odd, 2 = Even	0	-
Stopbits	203	Word	1 = None, 2 = Two	1	_
Delay Time	206	Word	10 250	50	ms
Byte Oder (Floating point format)	3000	Word	0, 1, 2, 3	0	-

Eingangsregister

Die Eingangsregister bestehen aus 16 bit. Sie können nur gelesen werden. Vor jedem Befehl wird die Adresse (1 Byte), nach jedem Befehl ein CRC (2 Byte) gesendet. PV, SV, TV und QV können über den Sensor-DTM eingestellt werden.

Register Name	Register Number	Туре	Note	
Status	100	DWord	Bit 0: Invalid Measurement Value PV	
			Bit 1: Invalid Measurement Value SV	
			Bit 2: Invalid Measurement Value TV	
			Bit 3: Invalid Measurement Value QV	
PV Unit	104	DWord	Unit Code	
PV	106		Primary Variable in Byte Order CDAB	
SV Unit	108	DWord	Unit Code	
SV	110		Secondary Variable in Byte Order CDAB	
TV Unit	112	DWord	Unit Code	
TV	114		Third Variable in Byte Order CDAB	
QV Unit	116	DWord	Unit Code	
QV	118		Quarternary Variable in Byte Order CDAB	
Status	1300	DWord	See Register 100	

Register Name	Register Number	Туре	Note
PV	1302		Primary Variable in Byte Order of Register 3000
SV	1304		Secondary Variable in Byte Order of Register 3000
TV	1306		Third Variable in Byte Order of Register 3000
QV	1308		Quarternary Variable in Byte Order of Register 3000
Status	1400	DWord	See Register 100
PV	1402		Primary Variable in Byte Order CDAB
Status	1412	DWord	See Register 100
SV	1414		Secondary Variable in Byte Order CDAB
Status	1424	DWord	See Register 100
TV	1426		Third Variable in Byte Order CDAB
Status	1436	DWord	See Register 100
QV	1438		Quarternary Variable in Byte Order CDAB
Status	2000	DWord	See Register 100
PV	2002	DWord	Primary Variable in Byte Order ABCD (Big Endian)
SV	2004	DWord	Secondary Variable in Byte Order ABCD (Big Endian)
TV	2006	DWord	Third Variable in Byte Order ABCD (Big Endian)
QV	2008	DWord	Quarternary Variable in Byte Order ABCD (Big Endian)
Status	2100	DWord	See Register 100
PV	2102	DWord	Primary Variable in Byte Order DCBA (Little Endian)
SV	2104	DWord	Secondary Variable in Byte Order DCBA (Little Endian)
TV	2106	DWord	Third Variable in Byte Order ABCD DCBA (Little Endian)
QV	2108	DWord	Quarternary Variable in Byte Order DCBA (Little Endian)
Status	2200	DWord	See Register 100
PV	2202	DWord	Primary Variable in Byte Order BACD (Middle Endian)
SV	2204	DWord	Secondary Variable in Byte Order BACD (Middle Endian)
TV	2206	DWord	Third Variable in Byte Order BACD (Middle Endian)
QV	2208	DWord	Quarternary Variable in Byte Order BACD (Middle Endian)

Unit Codes for Register 104, 108, 112, 116

Unit Code	Measurement Unit
32	Degree Celsius
33	Degree Fahrenheit
40	US Gallon
41	Liters

Unit Code	Measurement Unit
42	Imperial Gallons
43	Cubic Meters
44	Feet
45	Meters
46	Barrels
47	Inches
48	Centimeters
49	Millimeters
111	Cubic Yards
112	Cubic Feet
113	Cubic Inches

10.4 Modbus RTU-Befehle

FC3 Read Holding Register

Mit diesem Befehl wird eine beliebige Anzahl (1-127) von Holding-Registern ausgelesen. Es werden das Startregister, ab welchem gelesen werden soll und die Anzahl der Register übertragen.

	Parameter	Length	Code/Data
Request:	Function Code	1 Byte	0x03
	Start Address	2 Bytes	0x0000 to 0xFFFF
	Number of Registers	2 Bytes	1 to 127 (0x7D)
Response:	Function Code	1 Byte	0x03
	Start Address	2 Bytes	2*N
	Register Value	N*2 Bytes	Data

FC4 Read Input Register

Mit diesem Befehl wird eine beliebige Anzahl (1-127) von Input Registern ausgelesen. Es werden das Startregister, ab welchem gelesen werden soll und die Anzahl der Register übertragen.

	Parameter	Length	Code/Data
Request:	Function Code	1 Byte	0x04
	Start Address	2 Bytes	0x0000 to 0xFFFF
	Number of Registers	N*2 Bytes	1 to 127 (0x7D)
Response:	Function Code	1 Byte	0x04
	Start Address	2 Bytes	2*N
	Register Value	N*2 Bytes	Data

FC6 Write Single Register

Mit diesem Funktionscode wird in ein einzelnes Holding Register geschrieben.

	Parameter	Length	Code/Data
Request:	Function Code	1 Byte	0x06
	Start Address	2 Bytes	0x0000 to 0xFFFF
	Number of Registers	2 Bytes	Data
Response:	Function Code	1 Byte	0x04
	Start Address	2 Bytes	2*N
	Register Value	2 Bytes	Data

FC8 Diagnostics

Mit diesem Funktionscode werden verschiedene Diagnosefunktionen ausgelöst oder Diagnosewerte ausgelesen.

	Parameter	Length	Code/Data
Request:	Function Code	1 Byte	0x08
	Sub Function Code	2 Bytes	
	Data	N*2 Bytes	Data
Response:	Function Code	1 Byte	0x08
	Sub Function Code	2 Bytes	
	Data	N*2 Bytes	Data

Umgesetzte Funktionscodes:

Sub Function Code	Name
0x00	Return Data Request
0x0B	Return Message Counter

Bei Sub-Funktionscode 0x00 kann nur ein 16-Bit-Wert geschrieben werden.

FC16 Write Multiple Register

Mit diesem Funktionscode wird in mehrere Holding Register geschrieben. Es kann in einer Anfrage nur in Register geschrieben werden, die unmittelbar aufeinanderfolgen.

	Parameter	Length	Code/Data
Request:	Function Code	1 Byte	0x10
	Start Address	2 Bytes	0x0000 to 0xFFFF
	Register Value	2 Bytes	0x0001 to 0x007B
	Byte Number	1 Byte	2*N
	Register Value	N*2 Bytes	Data
Response:	Function Code	1 Byte	0x10
	Sub Function Code	2 Bytes	0x0000 to 0xFFFF
	Data	2 Bytes	0x01 to 0x7B

FC17 Report Sensor ID

Mit diesem Funktionscode wird die Sensor ID am Modbus abgefragt.

	Parameter	Length	Code/Data
Request:	Function Code	1 Byte	0x11
Response:	Function Code	1 Byte	0x11
	Byte Number	1 Byte	
	Sensor ID	1 Byte	
	Run Indicator Status	1 Byte	

FC43 Sub 14, Read Device Identification

Mit diesem Funktionscode wird die Device Identification abgefragt.

	Parameter	Length	Code/Data
Request:	Function Code	1 Byte	0x2B
	MEI Type	1 Byte	0x0E
	Read Device ID Code	1 Byte	0x01 to 0x04
	Object ID	1 Byte	0x00 to 0xFF
Response:	Function Code	1 Byte	0x2B
	MEI Type	1 Byte	0x0E
	Read Device ID Code	1 Byte	0x01 to 0x04
	Confirmity Level	1 Byte	0x01, 0x02, 0x03, 0x81, 0x82, 0x83
	More follows	1 Byte	00/FF
	Next Object ID	1 Byte	Object ID number
	Number of Objects	1 Byte	
	List of Object ID	1 Byte	
	List of Object length	1 Byte	
	List of Object value	1 Byte	Depending on the Object ID

10.5 Levelmaster-Befehle

Der VEGAFLEX 83 ist ebenfalls gegeignet zum Anschluss an folgende RTUs mit Levelmaster-Protokoll. Das Levelmaster-Protokoll wird oft als "Siemens-" bzw. "Tank-Protokoll" bezeichnet.

RTU	Protocol
ABB Totalflow	Levelmaster
Kimray DACC 2000/3000	Levelmaster
Thermo Electron Autopilot	Levelmaster

Parameter für die Buskommunikation

Der VEGAFLEX 83 ist mit den Defaultwerten vorbelegt:

Parameter	Configurable Values	Default Value
Baud Rate	1200, 2400, 4800, 9600, 19200	9600
Start Bits	1	1
Data Bits	7, 8	8
Parity	None, Odd, Even	None
Stop Bits	1, 2	1
Address range Levelmaster	32	32

Den Levelmasterbefehlen liegt folgende Syntax zugrunde:

- Groß geschriebene Buchstaben stehen am Anfang bestimmter Datenfelder
- Klein geschriebene Buchstaben stehen für Datenfelder
- Alle Befehle werden mit "<cr>" (carriage return) abgeschlossen
- Alle Befehle beginnen mit "*Uuu*", wobei "*uu*" für die Adresse steht (00-31)
- "*" kann als Joker für jede Stelle in der Adresse benützt werden. Der Sensor wandelt dies immer in seine Adresse um. Bei mehr als einem Sensor darf der Joker nicht benützt werden, da sonst mehrere Slaves antworten
- Befehle, welche das Gerät ändern, schicken den Befehl mit anschließendem "OK" zurück. "EE-ERROR" ersetzt "OK", wenn es ein Problem beim Ändern der Konfiguration gab

Report Level (and Temperature)

	Parameter	Length	Code/Data
Request:	Report Level (and Temperature)	4 characters ASCII	Uuu?
Response:	Report Level (and Temperature)	24 characters ASCII	UuuDIII.IIFtttEeeeeWwww uu = Address III.II = PV in inches ttt = Temperature in Fahrenheit eeee = Error number (0 no error, 1 level data not readable) wwww = Warning number (0 no warning)

PV in inches wird wiederholt, wenn "Set number of floats" auf 2 gesetzt wird. Es können somit 2 Messwerte übertragen werden. PV-Wert wird als erster Messwert übertragen, SV als 2. Messwert.

Information:

Der max. zu übertragende Wert für den PV beträgt 999.99 inches (entspricht ca. 25,4 m).

Soll die Temperatur im Levelmaster Protokoll mit übertragen werden, so muss der TV im Sensor auf Temperatur gestellt werden.

PV, SV und TV können über den Sensor-DTM eingestellt werden.

Report Unit Number

	Parameter	Length	Code/Data
Request:	Report Unit Number	5 characters ASCII	U**N?

	Parameter	Length	Code/Data
Response:	Report Level (and Temperature)	6 characters ASCII	UuuNnn

Assign Unit Number

	Parameter	Length	Code/Data	
Request:	Assign Unit Number	6 characters ASCII	UuuNnn	
Response:	Assign Unit Number	6 characters ASCII	UuuNOK	
			uu = new Address	

Set number of Floats

	Parameter	Length	Code/Data
Request:	Set number of Floats	5 characters ASCII	UuuFn
Response:	Set number of Floats	6 characters ASCII	UuuFOK

Wird die Anzahl auf 0 gesetzt, wird kein Füllstand mehr zurückgemeldet

Set Baud Rate

	Parameter	Length	Code/Data
Request:	Set Baud Rate	8 (12) characters ASCII	UuuBbbbb[b][pds]
			Bbbbb[b] = 1200, 9600 (default)
			pds = parity, data length, stop bit (optional)
			parity: none = 81, even = 71 (default), odd = 71
Response:	Set Baud Rate	11 characters ASCII	

Beispiel: U01B9600E71

Gerät an Adresse 1 ändern zu Baudrate 9600, Parität even, 7 Datenbits, 1 Stoppbit

Set Receive to Transmit Delay

	Parameter	Length	Code/Data
Request:	Set Receive to Transmit Delay	7 characters ASCII	UuuRmmm mmm = milliseconds (50 up to 250), default = 127 ms
Response:	Set Receive to Transmit Delay	6 characters ASCII	UuuROK

Report Number of Floats

	Parameter	Length	Code/Data
Request:	Set Receive to Transmit Delay	4 characters ASCII	UuuF

	Parameter	Length	Code/Data
Response:	Set Receive to Transmit Delay		UuuFn n = number of measurement values (0, 1 or 2)

Report Receive to Transmit Delay

	Parameter	Length	Code/Data
Request:	Report Receive to Transmit Delay	4 characters ASCII	UuuR
Response:	Report Receive to Transmit Delay	7 characters ASCII	UuuRmmm mmm = milliseconds (50 up to 250), default = 127 ms

Fehlercodes

Error Code	Name	
EE-Error	Error While Storing Data in EEPROM	
FR-Error	Erorr in Frame (too short, too long, wrong data)	
LV-Error	Value out of limits	

10.6 Konfiguration typischer Modbus-Hosts

Die Basisnummer der Input Register wird immer zur Input-Register-Adresse des VEGAFLEX 83 addiert.

Parameter	Value Fisher ROC 809	Value ABB Total Flow	Value Fisher Thermo Elect- ron Autopilot	Value Fisher Bristol Control- Wave Micro	Value Scada- Pack
Baud Rate	9600	9600	9600	9600	9600
Floating Point Format Code	0	0	0	2 (FC4)	0
RTU Data Type	Conversion Code 66	16 Bit Modicon	IEE Fit 2R	32-bit registers as 2 16-bit re- gisters	Floating Point
Input Register Base Number	0	1	0	1	30001

Daraus ergeben sich folgende Konstellationen:

- Fisher ROC 809 Registeradresse für 1300 ist Adresse 1300
- ABB Total Flow Registeradresse f
 ür 1302 ist Adresse 1303
- Thermo Electron Autopilot Registeradresse für 1300 ist Adresse 1300
- Bristol ControlWave Micro Registeradresse f
 ür 1302 ist Adresse 1303
- ScadaPack Registeradresse für 1302 ist Adresse 31303

10.7 Maße

Die folgenden Maßzeichnungen stellen nur einen Ausschnitt der möglichen Ausführungen dar.

Detaillierte Maßzeichnungen können auf <u>www.vega.com/downloads</u> und "Zeichnungen" heruntergeladen werden.

Kunststoffgehäuse

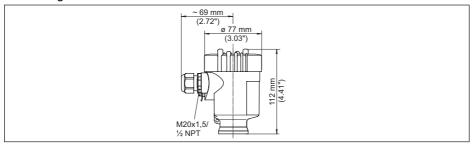


Abb. 30: Gehäuseausführungen in Schutzart IP66/IP67 (mit eingebautem Anzeige- und Bedienmodul vergrößert sich die Gehäusehöhe um 9 mm/0.35 in)

- 1 Kunststoff-Einkammer
- 2 Kunststoff-Zweikammer

Aluminiumgehäuse

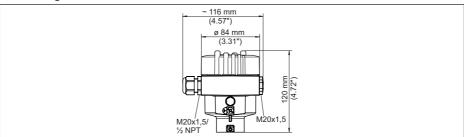


Abb. 31: Gehäuseausführungen in Schutzart IP66/IP68 (0,2 bar), (mit eingebautem Anzeige- und Bedienmodul vergrößert sich die Gehäusehöhe um 9 mm/0.35 in)

- 1 Aluminium-Einkammer
- 2 Aluminium-Zweikammer

Aluminiumgehäuse in Schutzart IP66/IP68 (1 bar)

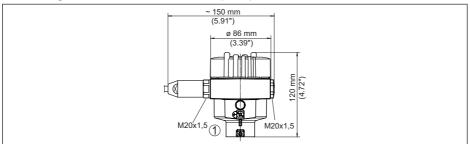


Abb. 32: Gehäuseausführungen in Schutzart IP66/IP68 (1 bar), (mit eingebautem Anzeige- und Bedienmodul vergrößert sich die Gehäusehöhe um 9 mm/0.35 in)

- 1 Aluminium-Einkammer
- 2 Aluminium-Zweikammer

Edelstahlgehäuse

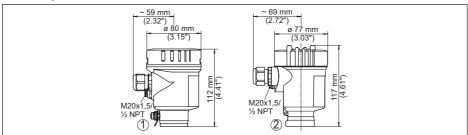


Abb. 33: Gehäuseausführungen in Schutzart IP66/IP68 (0,2 bar), (mit eingebautem Anzeige- und Bedienmodul vergrößert sich die Gehäusehöhe um 9 mm/0.35 in)

- 1 Edelstahl-Einkammer (elektropoliert)
- 2 Edelstahl-Einkammer (Feinguss)
- 3 Edelstahl-Zweikammer (Feinguss)

Edelstahlgehäuse in Schutzart IP66/IP68 (1 bar)

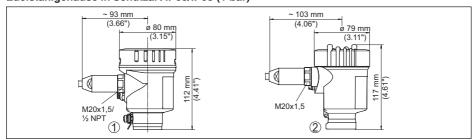


Abb. 34: Gehäuseausführungen in Schutzart IP66/IP68 (1 bar), (mit eingebautem Anzeige- und Bedienmodul vergrößert sich die Gehäusehöhe um 9 mm/0.35 in)

- 1 Edelstahl-Einkammer (elektropoliert)
- 2 Edelstahl-Einkammer (Feinguss)
- 3 Edelstahl-Zweikammer (Feinguss)

VEGAFLEX 83, Stabausführung ø 8 mm (0.315 in), poliert

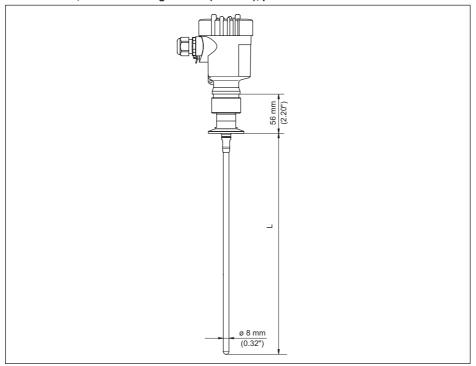


Abb. 35: VEGAFLEX 83, Stabausführung ø 8 mm (0.315 in), poliert

L Sensorlänge, siehe Kapitel "Technische Daten"

VEGAFLEX 83, Stabausführung ø 8 mm (0.315 in), poliert - Autoklavierbare Ausführung

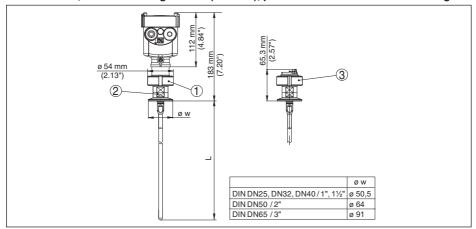


Abb. 36: VEGAFLEX 83, Stabausführung ø 8 mm (0.315 in), poliert - Autoklavierbare Ausführung

- 1 Überwurfmutter
- 2 Prozessanschluss
- 3 Verschlussdeckel

Verlängerungskomponenten - Stabverlängerung ø 8 mm (0.315 in), poliert

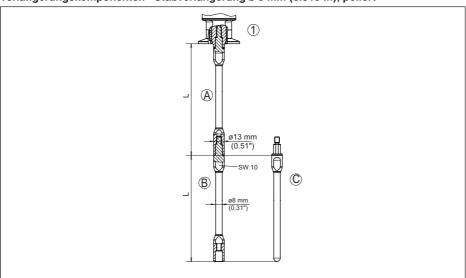


Abb. 37: Verlängerungsstäbe mit ø 8 mm (0.315 in)

- 1 Ausführung mit Gewindeanschluss
- 2 Ausführung mit Flanschanschluss
- A Basis-Verlängerungsstab mit ø 8 mm (0.315 in)
- B Verlängerungsstab mit ø 8 mm (0.315 in)
- C Endstab mit ø 8 mm (0.315 in)
- L Länge (Bestelllänge)

10.8 Gewerbliche Schutzrechte

VEGA product lines are global protected by industrial property rights. Further information see www.vega.com.

VEGA Produktfamilien sind weltweit geschützt durch gewerbliche Schutzrechte.

Nähere Informationen unter www.vega.com.

Les lignes de produits VEGA sont globalement protégées par des droits de propriété intellectuelle. Pour plus d'informations, on pourra se référer au site www.vega.com.

VEGA lineas de productos están protegidas por los derechos en el campo de la propiedad industrial. Para mayor información revise la pagina web www.vega.com.

Линии продукции фирмы ВЕГА защищаются по всему миру правами на интеллектуальную собственность. Дальнейшую информацию смотрите на сайте <u>www.vega.com</u>.

VEGA系列产品在全球享有知识产权保护。

进一步信息请参见网站<www.vega.com。

10.9 Warenzeichen

Alle verwendeten Marken sowie Handels- und Firmennamen sind Eigentum ihrer rechtmäßigen Eigentümer/Urheber.

INDEX

Α

Abgleich

- Max.-Abgleich 31, 32

- Min.-Abgleich 32, 33

Anschließen

- Flektrisch 20

Anschluss

-Schritte 20

-Technik 20

Antwortverzögerung 45, 46

Anwendung 30, 31

Anwendungsbereich 8

Anzahl Messwerte 46

Anzeigeformat 37

В

Baudrate 44

Bediensystem 26

Bedienung sperren 36

Beleuchtung 37

C

Channel 35

D

Dämpfung 34

Datenbits 44

Datum/Uhrzeit 40

Defaultwerte 41

Ε

Echokurve der Inbetriebnahme 40

Echokurvenspeicher 54

Einheiten 29

Einströmendes Medium 16

Ereignisspeicher 53

Ersatzteile

- Anzeige- und Bedienmodul mit Heizung 12

- Stabkomponenten 12

- Zentrierstern 12

F

Fehlercodes 56

Floating-Point-Format 45

Format Messwert 1 46

Format Messwert 2 46

Funktionsprinzip 9

G

Gasphase 31

Geräteadresse 23, 28 Gerätestatus 37

н

Hardwareadressierung 23, 29

Hauptmenü 28

ı

Infos auslesen 47

K

Kalibrierdatum 47

Kurvenanzeige

- Echokurve 39

L

Levelmaster 46

Linearisierung 34

M

Mediumtyp 30

Messabweichung 58

Messsicherheit 38

Messstellenname 29

Messwertanzeige 36, 37

Messwertspeicher 53

Modbus 35, 45

Montageposition 14

Ν

NAMUR NE 107 54

- Failure 55
- Maintenance 57
- Out of specification 56

P

Parität 45

R

Reparatur 65

Reset 40

S

Schleppzeiger 38

Schnellinbetriebnahme 27

Schnittstelle 44

Sensoreinstellungen kopieren 43

Sensormerkmale 47

Service-Hotline 60

Simulation 39

Skalierung Messwert 43, 44

Softwareadressierung 24, 29 Sondenlänge 29 Sondentyp 44 Spezialparameter 46 Sprache 36 Stoppbits 45 Störsignalausblendung 33 Störung – Beseitigung 58 Störungsbeseitigung 58

Т

Tastenfunktion 26 Timeout 45 Typschild 7

W


Werkskalibrierdatum 47

7

Zubehör

- Anzeige- und Bedienmodul 11

Druckdatum:

Die Angaben über Lieferumfang, Anwendung, Einsatz und Betriebsbedingungen der Sensoren und Auswertsysteme entsprechen den zum Zeitpunkt der Drucklegung vorhandenen Kenntnissen.
Änderungen vorbehalten

© VEGA Grieshaber KG, Schiltach/Germany 2021

51517-DE-210913