Operating Instructions

Vibrating level switch with tube extension for liquids

VEGASWING 63

Relay (DPDT)

Document ID: 29229
Safety instructions for Ex areas

Take note of the Ex specific safety instructions for Ex applications. These instructions are attached as documents to each instrument with Ex approval and are part of the operating instructions.

Editing status: 2019-11-21
1 About this document

1.1 Function
This operating instructions provides all the information you need for mounting, connection and setup as well as important instructions for maintenance, fault rectification, the exchange of parts and the safety of the user. Please read this information before putting the instrument into operation and keep this manual accessible in the immediate vicinity of the device.

1.2 Target group
This operating instructions manual is directed to trained personnel. The contents of this manual must be made available to the qualified personnel and implemented.

1.3 Symbols used

Document ID
This symbol on the front page of this instruction refers to the Document ID. By entering the Document ID on www.vega.com you will reach the document download.

Information, tip, note
This symbol indicates helpful additional information.

Caution: If this warning is ignored, faults or malfunctions can result.

Warning: If this warning is ignored, injury to persons and/or serious damage to the instrument can result.

Danger: If this warning is ignored, serious injury to persons and/or destruction of the instrument can result.

Ex applications
This symbol indicates special instructions for Ex applications.

SIL applications
This symbol indicates instructions for functional safety which must be taken into account particularly for safety-relevant applications.

• List
The dot set in front indicates a list with no implied sequence.

→ Action
This arrow indicates a single action.

1 Sequence of actions
Numbers set in front indicate successive steps in a procedure.

Battery disposal
This symbol indicates special information about the disposal of batteries and accumulators.
2 For your safety

2.1 Authorised personnel
All operations described in this documentation must be carried out only by trained, qualified personnel authorised by the plant operator. During work on and with the device, the required personal protective equipment must always be worn.

2.2 Appropriate use
The VEGASWING 63 is a sensor for point level detection. You can find detailed information about the area of application in chapter "Product description". Operational reliability is ensured only if the instrument is properly used according to the specifications in the operating instructions manual as well as possible supplementary instructions.

For safety and warranty reasons, any invasive work on the device beyond that described in the operating instructions manual may be carried out only by personnel authorised by the manufacturer. Arbitrary conversions or modifications are explicitly forbidden.

2.3 Warning about incorrect use
Inappropriate or incorrect use of this product can give rise to application-specific hazards, e.g. vessel overfill through incorrect mounting or adjustment. Damage to property and persons or environmental contamination can result. Also, the protective characteristics of the instrument can be impaired.

2.4 General safety instructions
This is a state-of-the-art instrument complying with all prevailing regulations and directives. The instrument must only be operated in a technically flawless and reliable condition. The operator is responsible for the trouble-free operation of the instrument. When measuring aggressive or corrosive media that can cause a dangerous situation if the instrument malfunctions, the operator has to implement suitable measures to make sure the instrument is functioning properly.

During the entire duration of use, the user is obliged to determine the compliance of the necessary occupational safety measures with the current valid rules and regulations and also take note of new regulations.

The safety instructions in this operating instructions manual, the national installation standards as well as the valid safety regulations and accident prevention rules must be observed by the user.

For safety and warranty reasons, any invasive work on the device beyond that described in the operating instructions manual may be carried out only by personnel authorised by the manufacturer. Arbitrary conversions or modifications are explicitly forbidden. For safety reasons, only the accessory specified by the manufacturer must be used.
To avoid any danger, the safety approval markings and safety tips on the device must also be observed and their meaning read in this operating instructions manual.

2.5 Safety label on the instrument

The safety approval markings and safety tips on the device must be observed.

2.6 EU conformity

The device fulfills the legal requirements of the applicable EU directives. By affixing the CE marking, we confirm the conformity of the instrument with these directives.

The EU conformity declaration can be found on our homepage.

2.7 SIL conformity

VEGASWING 63 fulfills the requirements of functional safety according to IEC 61508 resp. IEC 61511. You can find further information in the Safety Manual "VEGASWING series 60".

2.8 Installation and operation in the USA and Canada

This information is only valid for USA and Canada. Hence the following text is only available in the English language.

Installations in the US shall comply with the relevant requirements of the National Electrical Code (ANSI/NFPA 70).

Installations in Canada shall comply with the relevant requirements of the Canadian Electrical Code.

2.9 Safety instructions for Ex areas

For Ex applications, only devices with corresponding Ex approval may be used. Observe the Ex-specific safety instructions. These are an integral part of the operating instructions and are enclosed with every device with Ex approval.

2.10 Environmental instructions

Protection of the environment is one of our most important duties. That is why we have introduced an environment management system with the goal of continuously improving company environmental protection. The environment management system is certified according to DIN EN ISO 14001.

Please help us fulfill this obligation by observing the environmental instructions in this manual:

- Chapter "Packaging, transport and storage"
- Chapter "Disposal"
3 Product description

3.1 Configuration

Scope of delivery
The scope of delivery encompasses:

- VEGASWING 63 point level switch
- Documentation
 - This operating instructions manual
 - Safety Manual "Functional safety (SIL)" (optional)
 - Supplementary instructions manual "Plug connector for level sensors" (optional)
 - Ex-specific "Safety instructions" (with Ex versions)
 - If necessary, further certificates

Constituent parts
The VEGASWING 63 consists of the components:

- Housing lid
- Housing with electronics
- Process fitting with tuning fork

Type label
The type label contains the most important data for identification and use of the instrument:

- Article number
- Serial number
- Technical data
- Article numbers, documentation
- SIL identification (with SIL rating ex works)
With the serial number, you can access the delivery data of the instrument via "www.vega.com", "Search". You can find the serial number on the inside of the instrument as well as on the type label on the outside.

3.2 Principle of operation

VEGASWING 63 is a point level sensor with tuning fork for point level detection.

It is designed for industrial use in all areas of process technology and can be used in liquids.

Typical applications are overfill and dry run protection. The small tuning fork allows use in all kinds of tanks and vessels. Thanks to its simple and rugged measuring system, VEGASWING 63 is virtually unaffected by the chemical and physical properties of the liquid.

It functions even under difficult conditions such as turbulence, air bubbles, foam generation, buildup, strong external vibration or changing products.

Function monitoring

The electronics module of VEGASWING 63 continuously monitors the following criteria via frequency evaluation:

- Strong corrosion or damage on the tuning fork
- Loss of vibration
- Line break to the piezo drive

If a malfunction is detected or in case of voltage supply, the electronics takes on a defined switching status, i.e. the relay deenergises (safe state).

Functional principle

The tuning fork is piezoelectrically energised and vibrates at its mechanical resonance frequency of approx. 1200 Hz. The piezos are fixed mechanically and are hence not subject to temperature shock limitations. The frequency changes when the tuning fork is covered by the medium. This change is detected by the integrated electronics module and converted into a switching command.

Voltage supply

VEGASWING 63 is a compact instrument, i.e. it can be operated without external evaluation system. The integrated electronics evaluates the level signal and outputs a switching signal. With this switching signal, a connected device can be operated directly (e.g. a warning system, a pump etc.).

The data for power supply are specified in chapter "Technical data".

3.3 Adjustment

The switching condition of VEGASWING 63 with plastic housing can be checked when the housing is closed (signal lamp). With the basic setting, products with a density ≥ 0.7 g/cm³ (0.025 lbs/in³) can be detected. The instrument can be adapted if products with lower density are to be measured.
On the electronics module you will find the following display and adjustment elements:

- Signal lamp for indication of the switching condition (green/red)
- DIL switch for sensitivity adjustment
- Mode adjustment for selection of the switching condition (A/B)

3.4 Storage and transport

Packaging

Your instrument was protected by packaging during transport. Its capacity to handle normal loads during transport is assured by a test based on ISO 4180.

The packaging of standard instruments consists of environment-friendly, recyclable carton material. The sensing element is additionally protected with a cardboard cover. For special versions, PE foam or PE foil is also used. Please dispose of the packaging material through specialised recycling companies.

Transport

Transport must be carried out in due consideration of the notes on the transport packaging. Nonobservance of these instructions can cause damage to the device.

Transport inspection

The delivery must be checked for completeness and possible transit damage immediately at receipt. Ascertained transit damage or concealed defects must be appropriately dealt with.

Storage

Up to the time of installation, the packages must be left closed and stored according to the orientation and storage markings on the outside.

Unless otherwise indicated, the packages must be stored only under the following conditions:

- Not in the open
- Dry and dust free
- Not exposed to corrosive media
- Protected against solar radiation
- Avoiding mechanical shock and vibration

Storage and transport temperature

- Storage and transport temperature see chapter "Supplement - Technical data - Ambient conditions"
- Relative humidity 20 … 85 %

Lifting and carrying

With instrument weights of more than 18 kg (39.68 lbs) suitable and approved equipment must be used for lifting and carrying.

3.5 Accessories

PLICSLED

The pluggable display module PLICSLED is used for clearly visible indication of the switching status. It can be attached to the electronics of the sensor and removed at any time.

You can find further information in the operating instructions "PLIC-SLED" (Document-ID 47885).
Flanges

Screwed flanges are available in different versions according to the following standards: DIN 2501, EN 1092-1, BS 10, ASME B 16.5, JIS B 2210-1984, GOST 12821-80.

Electronics module

The electronics module SW E60 is a replacement part for level switches VEGASWING 63.
You can find information in the operating instructions manual of the electronics module.

Lock fitting

The lock fitting is used for infinite locking with tube extension.
The following lock fittings are available:

- ARV-SG63.1 - unpressurized
- ARV-SG63.2 - up to 16 bar
- ARV-SG63.3 - up to 64 bar

The wetted parts of the lock fitting can be either of steel (316L) or Alloy C22 (2.4602).
Lock fittings cannot be used in coated tube extensions.
You can find additional information in the operating instructions manuals of the lock fittings.

Plug connector

For connecting the sensors with a separator to voltage supply or signal processing, the sensors are also available with plug connectors.
The following plug connectors are available:

- M12 x 1
- ISO 4400
- Harting HAN 7D
- Harting HAN 8D
- Amphenol-Tuchel
4 Mounting

4.1 General instructions

Suitability for the process conditions
Make sure that all parts of the instrument coming in direct contact with the process, especially the sensor element, process seal and process fitting, are suitable for the existing process conditions, such as process pressure, process temperature as well as the chemical properties of the medium.

You can find the specifications in chapter "Technical data" and on the nameplate.

Suitability for the ambient conditions
The instrument is suitable for standard and extended ambient conditions acc. to DIN/EN/IEC/ANSI/ISA/UL/CSA 61010-1.

Switching point
In general, VEGASWING 63 can be installed in any position. The instrument only has to be mounted in such a way that the tuning fork is at the height of the desired switching point.

The tuning fork has lateral markings (notches) that indicate the switching point with vertical mounting. The switching point applies to water in conjunction with the basic setting of the density switch \(\geq 0.7 \text{ g/cm}^3 (0.025 \text{ lbs/in}^3) \). When mounting VEGASWING 63, make sure that this marking is at the height of the requested switching point.

Keep in mind that the switching point of the instrument will shift if the medium has a density other than water - water is \(1 \text{ g/cm}^3 (0.036 \text{ lbs/in}^3) \). For products \(\leq 0.7 \text{ g/cm}^3 (0.025 \text{ lbs/in}^3) \) and \(\geq 0.5 \text{ g/cm}^3 (0.018 \text{ lbs/in}^3) \) the density switch must be set to \(\geq 0.5 \text{ g/cm}^3 \).

Keep in mind that foams with a density \(\geq 0.45 \text{ g/cm}^3 (0.016 \text{ lbs/in}^3) \) are detected by the sensor. This can lead to erroneous switchings, particularly when the sensor is used for dry run protection.
Fig. 2: Vertical mounting
1 Switching point approx. 13 mm (0.51 in)
2 Switching point with lower density
3 Switching point with higher density
4 Switching point approx. 27 mm (1.06 in)

Fig. 3: Horizontal mounting
1 Switching point
2 Marking with screwed version, facing up

Fig. 4: Horizontal installation (recommended mounting position, particularly for adhesive products)
1 Switching point
2 Marking with screwed version, facing up

In the case of flange versions, the fork is aligned as follows.
Moisture

Use the recommended cables (see chapter "Connecting to power supply") and tighten the cable gland.

You can give your instrument additional protection against moisture penetration by leading the connection cable downward in front of the cable gland. Rain and condensation water can thus drain off. This applies mainly to outdoor mounting as well as installation in areas where high humidity is expected (e.g. through cleaning processes) or on cooled or heated vessels.

To maintain the housing protection, make sure that the housing lid is closed during operation and locked, if necessary.

Make sure that the degree of contamination specified in chapter "Technical data" meets the existing ambient conditions.

Transport

Caution:
Do not hold VEGASWING 63 on the tuning fork. Particularly with flange or tube versions, the tuning fork can be damaged just by the weight of the instrument. Transport coated instruments very carefully and avoid touching the tuning fork.

Remove the packaging or the protective cover just before mounting.
Pressure/Vacuum

The process fitting must be sealed if there is gauge or low pressure in the vessel. Before use, check if the seal material is resistant against the measured product and the process temperature. The max. permissible pressure is specified in chapter "Technical data" or on the type label of the sensor.

Handling

The vibrating level switch is a measuring instrument and must be treated accordingly. Bending the vibrating element will destroy the instrument.

⚠️ Warning:
The housing must not be used to screw the instrument in! Applying tightening force can damage internal parts of the housing.

Use the hexagon above the thread for screwing in.

Cable entries - NPT thread

Metric threads
In the case of instrument housings with metric thread, the cable glands are screwed in at the factory. They are sealed with plastic plugs as transport protection.

You have to remove these plugs before electrical connection.

NPT thread
In the case of instrument housings with self-sealing NPT threads, it is not possible to have the cable entries screwed in at the factory. The free openings for the cable glands are therefore covered with red dust protection caps as transport protection.

Prior to setup you have to replace these protective caps with approved cable glands or close the openings with suitable blind plugs.

4.2 Mounting instructions

VEGASWING 63 has a defined thread starting point. This means that every VEGASWING 63 is in the same fork position after being screwed in. Remove therefore the supplied seal from the thread of VEGASWING 63. This seal is not required when using a welded socket with O-ring in front.

Keep in mind that this welded socket is not suitable for coated instrument versions.

Screw VEGASWING 63 completely into the welded socket. The later position can be determined already before welding. Mark the appropriate position of the welded socket. Before welding, unscrew VEGASWING 63 and remove the rubber ring from the welded socket. The welded socket has a marking (notch). Weld the socket with the notch facing upward, or in case of pipelines (DN 32 up to DN 50), aligned with the direction of flow.
In case of horizontal mounting in adhesive and viscous products, the surfaces of the tuning fork should be vertical in order to reduce buildup on the tuning fork. On the screwed version you will find a marking on the hexagon. With this you can check the position of the tuning fork when screwing it in. When the hexagon touches the seal, the thread can still be turned by approx. half a turn. This is sufficient to reach the recommended installation position.

In the case of flange versions, the fork is aligned with the flange holes. When used in adhesive and viscous products, the tuning fork should protrude into the vessel to avoid buildup. For that reason, sockets for flanges and mounting bosses should be avoided when mounting horizontally.

If VEGASWING 63 is mounted in the filling stream, unwanted false measurement signals can be generated. For this reason, mount VEGASWING 63 at a position in the vessel where no disturbances, e.g. from filling openings, agitators, etc., can occur.

This applies particularly to instrument types with long extension tube.

To make sure the tuning fork of VEGASWING 63 generates as little resistance as possible to product flow, mount the sensor so that the surfaces are parallel to the product movement.
Due to the effects of agitators, equipment vibration or similar, the level switch can be subjected to strong lateral forces. For this reason, do not use an overly long extension tube for VEGASWING 63, but check if you can mount a level switch on the side of the vessel in horizontal position.

Extreme vibration caused by the process or the equipment, e.g. agitators or turbulence in the vessel, can cause the extension tube of VEGASWING 63 to vibrate in resonance. This leads to increased stress on the upper weld joint. Should a longer tube version be necessary, you can provide a suitable support directly above the tuning fork to secure the extension tube.

This measure applies mainly to applications in Ex areas category 1G or WHG. Make sure that the tube is not subject to bending stress due to this measure.

Instruments with enamel coating should be treated very carefully and shocks should be avoided. Unpack VEGASWING 63 directly before installation. Insert VEGASWING 63 carefully into the vessel opening and avoid touching any sharp vessel parts.

The second seal of the gas-tight leadthrough (option) prevents an uncontrolled leakage of the medium. The service life of the gas-tight leadthrough depends on the chemical resistance of the materials. See "Technical data".

If it is determined (e.g. via an error message from VEGASWING 63) that medium has already penetrated into the vibrating element, the instrument must be exchanged immediately.
5 Connecting to power supply

5.1 Preparing the connection

Always keep in mind the following safety instructions:

Warning:
Connect only in the complete absence of line voltage.

- The electrical connection must only be carried out by trained, qualified personnel authorised by the plant operator.
- Always switch off power supply, before connecting or disconnecting the instrument.

Note:
Install a disconnecting device for the instrument which is easy to access. The disconnecting device must be marked for the instrument (IEC/EN 61010).

Take note of safety instructions for Ex applications
In hazardous areas you must take note of the respective regulations, conformity and type approval certificates of the sensors and power supply units.

Voltage supply
Connect the voltage supply according to the connection diagrams. The electronics module with relay output is designed in protection class I. To maintain this protection class, it is absolutely necessary that the earth conductor be connected to the inner earth conductor terminal. Keep the general installation regulations in mind. Take note of the corresponding installation regulations for hazardous areas with Ex applications.

The data for power supply are specified in chapter "Technical data".

Connection cable
The instrument is connected with standard three-wire cable without screen. If electromagnetic interference is expected which is above the test values of EN 61326 for industrial areas, screened cable should be used.

Make sure that the cable used has the required temperature resistance and fire safety for max. occurring ambient temperature.

Use cable with round cross-section. A cable outer diameter of 5 … 9 mm (0.2 … 0.35 in) ensures the seal effect of the cable gland. If you are using cable with a different diameter or cross-section, exchange the seal or use a suitable cable gland.

In hazardous areas, use only approved cable connections for VEGASWING 63.

Connection cable for Ex applications
Take note of the corresponding installation regulations for Ex applications.

Cover all housing openings conforming to standard according to EN 60079-1.
5 Connecting to power supply

5.2 Connection procedure

With Ex instruments, the housing cover may only be opened if there is no explosive atmosphere present.

Proceed as follows:

1. Unscrew the housing lid
2. Loosen compression nut of the cable gland and remove blind plug
3. Remove approx. 10 cm (4 in) of the cable mantle, strip approx. 1 cm (0.4 in) of insulation from the ends of the individual wires
4. Insert the cable into the sensor through the cable entry
5. Open the terminals with a screwdriver
6. Insert the wire ends into the open terminals according to the wiring plan
7. Tighten the terminals with a screwdriver
8. Check the hold of the wires in the terminals by lightly pulling on them
9. Tighten the compression nut of the cable entry gland. The seal ring must completely encircle the cable
10. Screw the housing lid back on

The electrical connection is finished.

5.3 Wiring plan, single chamber housing

The following illustrations apply to the non-Ex as well as to the Ex-d version.

Housing overview

Fig. 10: Material versions, single chamber housing

1 Plastic (not with Ex d)
2 Aluminium
3 Stainless steel (not with Ex d)
4 Stainless steel, electropolished (not with Ex d)
5 Filter element for pressure compensation or blind plug with version IP66/ IP68, 1 bar (not with Ex d)
Connecting to power supply

Electronics and connection compartment

![Diagram of Electronics and connection compartment](image)

- **Fig. 11: Electronics and connection compartment, single chamber housing**
 - 1 Control lamp
 - 2 DIL switch for mode adjustment
 - 3 DIL switch for switching point adaptation
 - 4 Ground terminal
 - 5 Connection terminals

Wiring plan

We recommend connecting VEGASWING 63 in such a way that the switching circuit is open when there is a level signal, line break or failure (safe state).

Information:
The relays are always shown in non-operative condition.

![Wiring diagram](image)

- **Fig. 12: Wiring plan, single chamber housing**
 - 1 Relay output
 - 2 Relay output
 - 3 Voltage supply

Connection to a PLC

If inductive loads or stronger currents are switched through, the gold plating on the relay contact surface will be permanently damaged. The contact is then no longer suitable for switching low-voltage circuits.
Inductive loads also result from the connection to a PLC input or output and/or in combination with long cables. It is imperative that you take measures to extinguish sparks to protect the relay contact (e.g. Z diode) or use an electronic version with transistor output.
6 Setup

6.1 General information

The figures in brackets refer to the following illustrations.

Function/Configuration

With plastic housings, the switching condition of the electronics can be checked when the housing cover is closed (control lamp). With the basic setting, products with a density $\geq 0.7 \text{ g/cm}^3$ (0.025 lbs/in^3) can be detected. For products with lower density, the switch must be set to $\geq 0.5 \text{ g/cm}^3$ (0.018 lbs/in^3).

On the electronics module you will find the following display and adjustment elements:

- Signal lamp (1)
- DIL switch for mode adjustment - A/B (2)
- DIL switch for adjustment of the density range (3)

Note:

Always immerse the tuning fork of VEGASWING 63 in a liquid to test its function. Do not test the function of VEGASWING 63 with your hand. This can damage the sensor.

6.2 Adjustment elements

![Fig. 13: Oscillator SWE60R - Relay output](image)

- Control lamp (LED)
- DIL switch for mode adjustment
- DIL switch for adjustment of the density range

Signal lamp (1)

Control lamp for indication of the switching status

- green = relay energized
- red = relay deenergized
- red (flashing) = failure

Mode adjustment (2)

With the mode adjustment (A/B) you can change the switching condition of the relay. You can set the required mode according to the
"Function table" (A - max. detection or overflow protection, B - min. detection or dry run protection).

Adjustment of the density range (3)

With this DIL switch (3) you can set the switching point to liquids having a density between 0.5 and 0.7 g/cm³ (0.018 and 0.025 lbs/in³). With the basic setting, liquids with a density of ≥ 0.7 g/cm³ (0.025 lbs/in³) can be detected. In liquids with lower density, you must set the switch to ≥ 0.5 g/cm³ (0.018 lbs/in³). The specifications for the position of the switching point relate to water - density value 1 g/cm³ (0.036 lbs/in³). In products with a different density, the switching point will shift in the direction of the housing or tuning fork end depending on the density and type of installation.

Note:
Keep in mind that foams with a density ≥ 0.45 g/cm³ (0.016 lbs/in³) are detected by the sensor. This can lead to erroneous switchings, particularly when the sensor is used for dry run protection.

6.3 Function table

The following table provides an overview of the switching conditions depending on the set mode and the level.

<table>
<thead>
<tr>
<th>Level</th>
<th>Switching status</th>
<th>Control lamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode A Overflow protection</td>
<td>Relay energized</td>
<td>Green</td>
</tr>
<tr>
<td>Mode A Overflow protection</td>
<td>Relay deenergized</td>
<td>Red</td>
</tr>
<tr>
<td>Mode B Dry run protection</td>
<td>Relay energized</td>
<td>Green</td>
</tr>
<tr>
<td>Mode B Dry run protection</td>
<td>Relay deenergized</td>
<td>Red</td>
</tr>
<tr>
<td>Failure of the supply voltage (mode A/B)</td>
<td>Relay deenergized</td>
<td>Off</td>
</tr>
<tr>
<td>Level</td>
<td>Switching status</td>
<td>Control lamp</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Fault</td>
<td>any</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 4 5 (6) (7) (8)</td>
<td>Relay deener-gized</td>
</tr>
<tr>
<td></td>
<td></td>
<td>flashes red</td>
</tr>
</tbody>
</table>
7 Maintenance and fault rectification

7.1 Maintenance

If the device is used properly, no special maintenance is required in normal operation.

Cleaning

The cleaning helps that the type label and markings on the instrument are visible.

Take note of the following:

- Use only cleaning agents which do not corrode the housings, type label and seals
- Use only cleaning methods corresponding to the housing protection rating

7.2 Rectify faults

The operator of the system is responsible for taking suitable measures to rectify faults.

Causes of malfunction

The device offers maximum reliability. Nevertheless, faults can occur during operation. These may be caused by the following, e.g.:

- Sensor
- Process
- Voltage supply
- Signal processing

Fault rectification

The first measure to take is to check the output signal. In many cases, the causes can be determined this way and the faults quickly rectified.

24 hour service hotline

Should these measures not be successful, please call in urgent cases the VEGA service hotline under the phone no. +49 1805 858550.

The hotline is manned 7 days a week round-the-clock. Since we offer this service worldwide, the support is only available in the English language. The service is free, only standard call charges are incurred.
Checking the switching signal

<table>
<thead>
<tr>
<th>Error</th>
<th>Cause</th>
<th>Rectification</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEGASWING 63 signals "covered" without being submerged (overfill protection) VEGASWING 63 signals "uncovered" when being submerged (dry run protection)</td>
<td>Operating voltage too low</td>
<td>Check operating voltage</td>
</tr>
<tr>
<td></td>
<td>Electronics defective</td>
<td>Press the mode switch. If the instrument then changes the mode, the vibrating element may be covered with buildup or mechanically damaged. Should the switching function in the correct mode still be faulty, return the instrument for repair.</td>
</tr>
<tr>
<td></td>
<td>Unfavourable installation location</td>
<td>Mount the instrument at a location in the vessel where no dead zones or air bubbles can form.</td>
</tr>
<tr>
<td></td>
<td>Buildup on the vibrating element</td>
<td>Check the vibrating element and the sensor for buildup and remove the buildup if there is any.</td>
</tr>
<tr>
<td></td>
<td>Wrong mode selected</td>
<td>Set the correct mode with the mode switch (overflow protection, dry run protection). Wiring should be carried out according to the closed-circuit principle.</td>
</tr>
<tr>
<td></td>
<td>Signal lamp flashes red</td>
<td>Error on the vibrating element</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interference on the electronics module</td>
</tr>
<tr>
<td></td>
<td></td>
<td>instrument defective</td>
</tr>
</tbody>
</table>

Reaction after fault rectification

Depending on the reason for the fault and the measures taken, the steps described in chapter "Set up" may have to be carried out again.

7.3 Exchanging the electronics

If the electronics module is defective, it can be replaced by the user.

In Ex applications only an electronics module with respective Ex approval may be used.

You can find all the information you need to carry out an electronics exchange in the handbook of the new electronics module.

In general, all electronics modules of series SW60 can be interchanged. If you want to use an electronics module with a different signal output, you carry out the complete setup. You find the necessary, suitable operating instruction on our homepage.
Note:
Keep in mind that enamelled instrument versions need special electronics modules. These electronics modules are called SW60E or SW60E1.

7.4 How to proceed if a repair is necessary
You can find an instrument return form as well as detailed information about the procedure in the download area of our homepage: www.vega.com.

By doing this you help us carry out the repair quickly and without having to call back for needed information.

If a repair is necessary, please proceed as follows:
• Print and fill out one form per instrument
• Clean the instrument and pack it damage-proof
• Attach the completed form and, if need be, also a safety data sheet outside on the packaging
• Please contact the agency serving you to get the address for the return shipment. You can find the agency on our home page www.vega.com.
8 Dismount

8.1 Dismounting steps

Warning:
Before dismounting, be aware of dangerous process conditions such as e.g. pressure in the vessel, high temperatures, corrosive or toxic products etc.

Take note of chapters "Mounting" and "Connecting to voltage supply" and carry out the listed steps in reverse order.

With Ex instruments, the housing cover may only be opened if there is no explosive atmosphere present.

8.2 Disposal

The instrument consists of materials which can be recycled by specialised recycling companies. We use recyclable materials and have designed the electronics to be easily separable.

WEEE directive
The instrument does not fall in the scope of the EU WEEE directive. Article 2 of this Directive exempts electrical and electronic equipment from this requirement if it is part of another instrument that does not fall in the scope of the Directive. These include stationary industrial plants.

Pass the instrument directly on to a specialised recycling company and do not use the municipal collecting points.

If you have no way to dispose of the old instrument properly, please contact us concerning return and disposal.
9.1 Technical data

Note for approved instruments

The technical data in the respective safety instructions which are included in delivery are valid for approved instruments (e.g. with Ex approval). These data can differ from the data listed herein, for example regarding the process conditions or the voltage supply.

All approval documents can be downloaded from our homepage.

General data

Material 316L corresponds to 1.4404 or 1.4435

Materials, wetted parts

- **Process fitting - thread**: 316L, Alloy C22 (2.4602)
- **Process fitting - flange**: 316L, 316L with Alloy C22 (2.4602) coating, steel enamelled, 316L with ECTFE coating, 316L with PFA coating
- **Process seal**: Klingersil C-4400
- **Tuning fork**: 316L, Alloy C22 (2.4602), Alloy C4 (2.4610) enamelled
- **Extension tube: ø 21.3 mm (0.839 in)**: 316L, Alloy C22 (2.4602), Alloy C22 (2.4602) enamelled, 316L with ECTFE coating, 316L with PFA coating

Materials, non-wetted parts

- **Plastic housing**: Plastic PBT (Polyester)
- **Aluminium die-cast housing**: Aluminium die-casting AlSi10Mg, powder-coated (Basis: Polyester)
- **Stainless steel housing (precision casting)**: 316L
- **Stainless steel housing (electropolished)**: 316L
- **Seal between housing and housing lid**: Silicone SI 850 R
- **Seal between housing and housing cover (lacquer-compatible version)**: EPDM
- **Optical fibre in housing cover**: PMMA (Makrolon)
- **Ground terminal**: 316L
- **Cable gland**: PA, stainless steel, brass
- **Sealing, cable gland**: NBR
- **Blind plug, cable gland**: PA
- **Temperature adapter (optional)**: 316L

Second Line of Defense resp. gas-tight leadthrough (optional)

- **The Second Line of Defense (SLOD)** is a second level of the process separation in the form of a gas-tight feedthrough in the lower part of the housing, preventing product from penetrating into the housing.
- **Supporting material**: 316L
- **Glass potting**: Borosilicate glass (Schott no. 8421)
- **Contacts**: 1.4101
- **Helium leak rate**: < 10⁻⁶ mbar l/s
- **Pressure resistance**: PN 64

Sensor length (L)
- 316L, Alloy C22 (2.4602): 80 ... 6000 mm (3.15 ... 236.22 in)
- Alloy C22 (2.4602) enamelled: 80 ... 1500 mm (3.15 ... 59.06 in)
- 316L, ECTFE coated: 80 ... 3000 mm (3.15 ... 118.11 in)
- 316L, PFA coated: 80 ... 4000 mm (3.15 ... 157.48 in)
- **Sensor lengths - accuracy**: ± 2 mm (± 0.079 in)

Tube diameter: ø 21.3 mm (0.839 in)

Weight
- **Instrument weight (depending on process fitting)**: approx. 0.8 ... 4 kg (0.18 ... 8.82 lbs)
- **Tube extension**: approx. 920 g/m (9.9 oz/ft)

Layer thickness
- **Enamel**: 600 µm ±200 µm (0.024 in ±0.008 in)
- **ECTFE**: 500 µm +500/-200 µm (0.02 in +0.02/-0.008 in)
- **PFA**: 600 µm +500/-300 µm (0.024 in +0.02/-0.012 in)

Surface quality
- **Standard**: \(R_a < 3 \mu m \) (1.18⁻⁴ in)
- **Hygienic version (3A)**: \(R_a < 0.8 \mu m \) (3.15⁻⁵ in)
- **Hygienic version (3A)**: \(R_a < 0.3 \mu m \) (1.18⁻⁵ in)

Process fittings
- **Pipe thread, cylindrical (DIN 3852-A)**: G¾, G1
- **American pipe thread, conical (ASME B1.20.1)**: ¾ NPT, 1 NPT
- **Flanges**: DIN from DN 25, ASME from 1"
- **Hygienic fittings**: Slotted nut DN 40 PN 40, Clamp 1" DIN 32676 ISO 2852/316L, Clamp 2" DIN 32676 ISO 2852/316L, conus DN 25 PN 40, Tuchenhagen Varivent DN 50 PN 10

Max. torque - process fitting
- **Thread G¾, ¾ NPT**: 75 Nm (55 lbf ft)
- **Thread G1, 1 NPT**: 100 Nm (73 lbf ft)

Torque for NPT cable glands and Conduit tubes
- **Plastic housing**: max. 10 Nm (7.376 lbf ft)
- **Aluminium/Stainless steel housing**: max. 50 Nm (36.88 lbf ft)

Gas-tight leadthrough (optional)
- **Leakage rate**: < 10⁻⁶ mbar l/s
- **Pressure resistance**: PN 64
High voltage test (enamel)
max. 5 KV

Output variable

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>Relay output (DPDT), 2 floating spdts</td>
</tr>
<tr>
<td>Switching voltage</td>
<td>max. 253 V AC/DC</td>
</tr>
<tr>
<td></td>
<td>With circuits > 150 V AC/DC, the relay contacts must be in the same circuit.</td>
</tr>
<tr>
<td>Switching current</td>
<td>max. 3 A AC (cos phi > 0.9), 1 A DC</td>
</tr>
<tr>
<td>Breaking capacity</td>
<td></td>
</tr>
<tr>
<td>- Min.</td>
<td>50 mW</td>
</tr>
<tr>
<td>- Max.</td>
<td>750 VA AC, 40 W DC (at U < 40 V DC)</td>
</tr>
<tr>
<td></td>
<td>If inductive loads or stronger currents are switched through, the gold plating on the relay contact surface will be permanently damaged. The contact is then no longer suitable for switching low-level signal circuits.</td>
</tr>
<tr>
<td>Contact material (relay contacts)</td>
<td>AgNi or AgSnO2 each with 3 µm gold plating</td>
</tr>
<tr>
<td>Modes (switchable)</td>
<td></td>
</tr>
<tr>
<td>- A</td>
<td>Max. detection or overflow/overfill protection</td>
</tr>
<tr>
<td>- B</td>
<td>Min. detection or dry run protection</td>
</tr>
</tbody>
</table>

Measurement accuracy (according to DIN EN 60770-1)

Reference conditions and influencing variables (according to DIN EN 61298-1)

- Ambient temperature: +18 ... +30 °C (+64 ... +86 °F)
- Relative humidity: 45 ... 75 %
- Air pressure: 860 ... 1060 mbar/86 ... 106 kPa (12.5 ... 15.4 psig)
- Product temperature: +18 ... +30 °C (+64 ... +86 °F)
- Product density: 1 g/cm³ (0.036 lbs/in³) (water)
- Product viscosity: 1 mPa s
- Superimposed pressure: 0 kPa
- Sensor installation: Vertically from top
- Density selection switch: ≥ 0.7 g/cm³

Measurement accuracy

Deviations: ± 1 mm (0.04 in)
Influence of the process temperature on the switching point

![Graph showing the influence of process temperature on switching point]

Fig. 14: Influence of the process temperature on the switching point

1. Shifting of the switching point in mm (in)
2. Process temperature in °C (°F)
3. Switching point at reference conditions (notch)
4. Tuning fork

Influence of the product density on the switching point

![Graph showing the influence of product density on switching point]

Fig. 15: Influence of the product density on the switching point

1. Shifting of the switching point in mm (in)
2. Product density in g/cm³ (lb/in³)
3. Switch position ≥ 0.5 g/cm³ (0.018 lb/in³)
4. Switch position ≥ 0.7 g/cm³ (0.025 lb/in³)
5. Switching point at reference conditions (notch)
6. Tuning fork
Influence of the process pressure to the switching point

Fig. 16: Influence of the process pressure to the switching point

1 Shifting of the switching point in mm (in)
2 Process pressure in bar (psig)
3 Switching point at reference conditions (notch)
4 Tuning fork

Non-repeatability 0.1 mm (0.004 in)
Hysteresis approx. 2 mm (0.08 in) with vertical installation
Switching delay approx. 500 ms (on/off)
Measuring frequency approx. 1200 Hz

Ambient conditions

Ambient temperature on the housing -40 … +70 °C (-40 … +158 °F)
Storage and transport temperature -40 … +80 °C (-40 … +176 °F)

Process conditions

Measured variable Limit level of liquids
Process pressure -1 … 64 bar/-100 … 6400 kPa (-14.5 … 928 psig)
The process pressure is dependent on the process fitting, for example Clam p or flange (see the following diagrams)
Maximum allowable operating pressure 100 bar/10000 kPa (1450 psig) or 1.5 times process pressure
The function of the instrument is ensured up to an operating pressure of 100 bar/10000 kPa (1450 psig) at a maximum process temperature of +50 °C (+122 °F) (only with threaded versions).
Process temperature (thread or flange temperature)
- VEGASWING 63 of 316L/Alloy C22 (2.4602) -50 … +150 °C (-58 … +302 °F)
Process temperature (thread or flange temperature) with temperature adapter (option)

- VEGASWING 63 of 316L/Alloy C22 (2.4602) -50 ... +250 °C (-58 ... +482 °F)
- VEGASWING 63 enamelled -50 ... +200 °C (-58 ... +392 °F)
- VEGASWING 63 with ECTFE coating -50 ... +150 °C (-58 ... +302 °F)
- VEGASWING 63 with PFA coating -50 ... +250 °C (-58 ... +482 °F)
- VEGASWING 63 with PFA coating (with FDA approval) -50 ... +150 °C (-58 ... 302 °F)

Fig. 17: Ambient temperature - Process temperature
1 Process temperature in °C (°F)
2 Ambient temperature in °C (°F)
3 Temperature range with temperature adapter

Fig. 18: Process temperature - Process pressure with switch position ≥ 0.7 g/cm² (sensitivity switch)
1 Process pressure in bar (psig)
2 Process temperature in °C (°F)
Fig. 19: Process temperature - Process pressure with switch position ≥ 0.5 g/cm³ (sensitivity switch)

1 Process pressure in bar (psig)
2 Process temperature in °C (°F)

SIP process temperature (SIP = Sterilization in place)

PFA and ECTFE coatings are not suitable for SIP cleaning

Vapour stratification up to 2 h +150 °C (+302 F)

Additional process conditions

- **Viscosity - dynamic**: 0.1 … 10000 mPa s (requirement: with density 1)
- **Flow velocity**: max. 6 m/s (with a viscosity of 10000 mPa s)
- **Density**
 - Standard sensitivity: 0.7 … 2.5 g/cm³ (0.025 … 0.09 lbs/in³)
 - High sensitivity: 0.5 … 2.5 g/cm³ (0.018 … 0.09 lbs/in³)
- **Vibration resistance**
 - Instrument housing: 1 g at 5 … 200 Hz according to EN 60068-2-6 (vibration with resonance)
 - Sensor: 1 g with 5 … 200 Hz according EN 60068-2-6 (vibration at resonance) with sensor length up to 50 cm (19.69 in)

With a sensor length > 50 cm (19.69 in) you have to fix the extension tube with a suitable support. See mounting instructions.

Electromechanical data

- **Options of the cable entry**
 - Cable entry: M20 x 1.5; ½ NPT
 - Cable gland: M20 x 1.5; ½ NPT
 - Blind plug: M20 x 1.5; ½ NPT
 - Closing cap: ½ NPT
- **Screw terminals**: for wire cross-section up to 1.5 mm² (AWG 16)

Adjustment elements

- **Mode switch**
 - A: Max. detection or overflow/overfill protection
 - B: Min. detection or dry run protection
Density changeover switch

- \(\geq 0.5 \text{ g/cm}^3 \)
 0.5 … 2.5 g/cm\(^3\) (0.018 … 0.09 lbs/in\(^3\))

- \(\geq 0.7 \text{ g/cm}^3 \)
 0.7 … 2.5 g/cm\(^3\) (0.025 … 0.09 lbs/in\(^3\))

Voltage supply

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating voltage</td>
<td>20 … 253 V AC, 50/60 Hz, 20 … 72 V DC (at (U >60 \text{ V DC}), the ambient temperature can be max. 50 °C/122 °F)</td>
</tr>
<tr>
<td>Max. power consumption</td>
<td>8 VA (AC), 1.5 W (DC)</td>
</tr>
</tbody>
</table>

Electrical protective measures

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection rating</td>
<td>IP66/IP67 acc. to IEC 60529, Type 4X acc. to NEMA</td>
</tr>
<tr>
<td>Altitude above sea level</td>
<td>up to 5000 m (16404 ft)</td>
</tr>
<tr>
<td>Overvoltage category</td>
<td>III</td>
</tr>
<tr>
<td>Pollution degree</td>
<td>4</td>
</tr>
<tr>
<td>Protection rating (IEC 61010-1)</td>
<td>I</td>
</tr>
</tbody>
</table>

Functional safety (SIL)

- Single channel architecture (1oo1D) up to SIL2
- Multiple channel architecture see supplementary instructions manual “Safety Manual (SIL)"

Approvals

Instruments with approvals can have different technical specifications depending on the version. For that reason the associated approval documents of these instruments have to be carefully noted. They are part of the delivery or can be downloaded by entering the serial number of your instrument into the search field under www.vega.com as well as in the general download area.
9.2 Dimensions

VEGASWING 63, housing

Fig. 20: Housing versions
1 Plastic single chamber
2 Stainless steel single chamber (electropolished)
3 Stainless steel single chamber (precision casting)
4 Aluminium - single chamber
Fig. 21: VEGASWING 63

1 Thread
2 Clamp
3 Cone DN 25
4 Slotted nut DN 40
5 Flange
6 Tuchenhagen Varivent

$L = \text{Sensor length, see chapter "Technical data"}$
Fig. 22: Options

1 Gas-tight leadthrough
2 Temperature adapter
9.3 Industrial property rights

VEGA product lines are global protected by industrial property rights. Further information see www.vega.com.

Les lignes de produits VEGA sont globalement protégées par des droits de propriété intellectuelle. Pour plus d’informations, on pourra se référer au site www.vega.com.

VEGA系列产品在全球享有知识产权保护。

进一步信息请参见网站www.vega.com。

9.4 Trademark

All the brands as well as trade and company names used are property of their lawful proprietor/originator.
All statements concerning scope of delivery, application, practical use and operating conditions of the sensors and processing systems correspond to the information available at the time of printing.
Subject to change without prior notice

© VEGA Grieshaber KG, Schiltach/Germany 2019