Betriebsanleitung

Kapazitive Stabmesssonde zur kontinuierlichen Füllstandmessung anhaftender Medien

VEGACAL 64

Zweileiter 4 ... 20 mA/HART

Document ID: 30030

Inhaltsverzeichnis

1	Zu diesem Dokument	4
	1.1 Funktion	4
	1.2 Zielgruppe	
	1.3 Verwendete Symbolik	4
2	Zu Ihrer Sicherheit	5
	2.1 Autorisiertes Personal	5
	2.2 Bestimmungsgemäße Verwendung	
	2.3 Warnung vor Fehlgebrauch	5
	2.4 Allgemeine Sicherheitshinweise	
	2.5 Konformität	
	2.6 NAMUR-Empfehlungen	
	2.7 Sicherheitshinweise für Ex-Bereiche	
	2.8 Umwelthinweise	
3	Produktbeschreibung	
	3.1 Aufbau	
	3.2 Arbeitsweise	
	3.3 Bedienung	
	3.4 Verpackung, Transport und Lagerung	
4	Montieren	
	4.1 Allgemeine Hinweise	
	4.2 Montagehinweise	
5	An die Spannungsversorgung anschließen	17
	5.1 Anschluss vorbereiten	
	5.2 Anschlussschritte	
	5.3 Anschlussplan - Einkammergehäuse	19
	5.4 Anschlussplan - Zweikammergehäuse	21
	5.5 Anschlussplan - Ex d-Zweikammergehäuse	
	• • • • • • • • • • • • • • • • • • • •	
6	In Betrieb nehmen mit dem Anzeige- und Bedienmodul PLICSCOM	
	6.1 Kurzbeschreibung	25
	6.2 Anzeige- und Bedienmodul einsetzen	
	6.3 Bediensystem	26
	6.5 Menüplan	
	6.6 Sicherung der Parametrierdaten	
7	In Betrieb nehmen mit PACTware und anderen Bedienprogrammen	
	7.1 Den PC anschließen	
	7.2 Parametrierung mit PACTware	
	7.3 Parametrierung mit AMS™ und PDM	
	7.4 Sicherung der Parametrierdaten	
8	In Betrieb nehmen mit Smartphone/Tablet/PC/Notebook über Bluetooth	
	8.1 Vorbereitungen	
	8.2 Verbindung herstellen	
	8.3 Sensorparametrierung	
9	Diagnose und Service	48

	9.1	Instandhalten	
	9.2	Störungen beseitigen	48
	9.3	Elektronikeinsatz tauschen	50
	9.4	Vorgehen im Reparaturfall	
0		auen	
		Ausbauschritte	
	10.2	Entsorgen	52
		ng	
	11.1	Technische Daten	53
	11.2	Maße	58
		Gewerbliche Schutzrechte	
		Warenzeichen	

1 Zu diesem Dokument

1.1 Funktion

Die vorliegende Anleitung liefert Ihnen die erforderlichen Informationen für Montage, Anschluss und Inbetriebnahme sowie wichtige Hinweise für Wartung, Störungsbeseitigung, den Austausch von Teilen und die Sicherheit des Anwenders. Lesen Sie diese deshalb vor der Inbetriebnahme und bewahren Sie sie als Produktbestandteil in unmittelbarer Nähe des Gerätes jederzeit zugänglich auf.

1.2 Zielgruppe

Diese Betriebsanleitung richtet sich an ausgebildetes Fachpersonal. Der Inhalt dieser Anleitung muss dem Fachpersonal zugänglich gemacht und umgesetzt werden.

1.3 Verwendete Symbolik

Document ID

Dieses Symbol auf der Titelseite dieser Anleitung weist auf die Document ID hin. Durch Eingabe der Document ID auf www.vega.com kommen Sie zum Dokumenten-Download.

Information, **Hinweis**, **Tipp**: Dieses Symbol kennzeichnet hilfreiche Zusatzinformationen und Tipps für erfolgreiches Arbeiten.

Hinweis: Dieses Symbol kennzeichnet Hinweise zur Vermeidung von Störungen, Fehlfunktionen, Geräte- oder Anlagenschäden.

Vorsicht: Nichtbeachten der mit diesem Symbol gekennzeichneten Informationen kann einen Personenschaden zur Folge haben.

Warnung: Nichtbeachten der mit diesem Symbol gekennzeichneten Informationen kann einen ernsthaften oder tödlichen Personenschaden zur Folge haben.

Gefahr: Nichtbeachten der mit diesem Symbol gekennzeichneten Informationen wird einen ernsthaften oder tödlichen Personenschaden zur Folge haben.

Ex-Anwendungen

Dieses Symbol kennzeichnet besondere Hinweise für Ex-Anwendungen.

Liste

Der vorangestellte Punkt kennzeichnet eine Liste ohne zwingende Reihenfolge.

1 Handlungsfolge

Vorangestellte Zahlen kennzeichnen aufeinander folgende Handlungsschritte.

Entsorgung

Dieses Symbol kennzeichnet besondere Hinweise zur Entsorgung.

2 Zu Ihrer Sicherheit

2.1 Autorisiertes Personal

Sämtliche in dieser Dokumentation beschriebenen Handhabungen dürfen nur durch ausgebildetes und vom Anlagenbetreiber autorisiertes Fachpersonal durchgeführt werden.

Bei Arbeiten am und mit dem Gerät ist immer die erforderliche persönliche Schutzausrüstung zu tragen.

2.2 Bestimmungsgemäße Verwendung

Der VEGACAL 64 ist ein Sensor zur kontinuierlichen Füllstandmessung.

Detaillierte Angaben zum Anwendungsbereich finden Sie in Kapitel "*Produktbeschreibung*".

Die Betriebssicherheit des Gerätes ist nur bei bestimmungsgemäßer Verwendung entsprechend den Angaben in der Betriebsanleitung sowie in den evtl. ergänzenden Anleitungen gegeben.

2.3 Warnung vor Fehlgebrauch

Bei nicht sachgerechter oder nicht bestimmungsgemäßer Verwendung können von diesem Produkt anwendungsspezifische Gefahren ausgehen, so z. B. ein Überlauf des Behälters durch falsche Montage oder Einstellung. Dies kann Sach-, Personen- oder Umweltschäden zur Folge haben. Weiterhin können dadurch die Schutzeigenschaften des Gerätes beeinträchtigt werden.

2.4 Allgemeine Sicherheitshinweise

Das Gerät entspricht dem Stand der Technik unter Beachtung der üblichen Vorschriften und Richtlinien. Es darf nur in technisch einwandfreiem und betriebssicherem Zustand betrieben werden. Der Betreiber ist für den störungsfreien Betrieb des Gerätes verantwortlich. Beim Einsatz in aggressiven oder korrosiven Medien, bei denen eine Fehlfunktion des Gerätes zu einer Gefährdung führen kann, hat sich der Betreiber durch geeignete Maßnahmen von der korrekten Funktion des Gerätes zu überzeugen.

Durch den Anwender sind die Sicherheitshinweise in dieser Betriebsanleitung, die landesspezifischen Installationsstandards sowie die geltenden Sicherheitsbestimmungen und Unfallverhütungsvorschriften zu beachten.

Eingriffe über die in der Betriebsanleitung beschriebenen Handhabungen hinaus dürfen aus Sicherheits- und Gewährleistungsgründen nur durch vom Hersteller autorisiertes Personal vorgenommen werden. Eigenmächtige Umbauten oder Veränderungen sind ausdrücklich untersagt. Aus Sicherheitsgründen darf nur das vom Hersteller benannte Zubehör verwendet werden.

Um Gefährdungen zu vermeiden, sind die auf dem Gerät angebrachten Sicherheitskennzeichen und -hinweise zu beachten.

2.5 Konformität

Das Gerät erfüllt die gesetzlichen Anforderungen der zutreffenden landesspezifischen Richtlinien bzw. technischen Regelwerke. Mit der entsprechenden Kennzeichnung bestätigen wir die Konformität.

Die zugehörigen Konformitätserklärungen finden Sie auf unserer Homepage.

2.6 NAMUR-Empfehlungen

Die NAMUR ist die Interessengemeinschaft Automatisierungstechnik in der Prozessindustrie in Deutschland. Die herausgegebenen NAMUR-Empfehlungen gelten als Standards in der Feldinstrumentierung.

Das Gerät erfüllt die Anforderungen folgender NAMUR-Empfehlungen:

- NE 21 Elektromagnetische Verträglichkeit von Betriebsmitteln
- NE 43 Signalpegel für die Ausfallinformation von Messumformern
- NE 53 Kompatibilität von Feldgeräten und Anzeige-/Bedienkomponenten

Weitere Informationen siehe www.namur.de.

2.7 Sicherheitshinweise für Ex-Bereiche

Bei Anwendungen in explosionsgeschützten Bereichen (Ex) dürfen nur Geräte mit entsprechender Ex-Zulassung eingesetzt werden. Beachten Sie dabei die Ex-spezifischen Sicherheitshinweise. Diese sind Bestandteil der Betriebsanleitung und liegen jedem Gerät mit Ex-Zulassung bei.

2.8 Umwelthinweise

Der Schutz der natürlichen Lebensgrundlagen ist eine der vordringlichsten Aufgaben. Deshalb haben wir ein Umweltmanagementsystem eingeführt mit dem Ziel, den betrieblichen Umweltschutz kontinuierlich zu verbessern. Das Umweltmanagementsystem ist nach DIN EN ISO 14001 zertifiziert.

Helfen Sie uns, diesen Anforderungen zu entsprechen und beachten Sie die Umwelthinweise in dieser Betriebsanleitung:

- Kapitel "Verpackung, Transport und Lagerung"
- Kapitel "Entsorgen"

3 Produktbeschreibung

3.1 Aufbau

Lieferumfang

Der Lieferumfang besteht aus:

Füllstandsensor VEGACAL 64

Der weitere Lieferumfang besteht aus:

- Dokumentation
 - Betriebsanleitung VEGACAL 64
 - Safety Manual (SIL)
 - Anleitungen zu optionalen Geräteausstattungen
 - Ex-spezifischen "Sicherheitshinweisen" (bei Ex-Ausführungen)
 - Ggf. weiteren Bescheinigungen

Information:

In dieser Betriebsanleitung werden auch optionale Gerätemerkmale beschrieben. Der jeweilige Lieferumfang ergibt sich aus der Bestellspezifikation.

Geltungsbereich dieser Betriebsanleitung

Die vorliegende Betriebsanleitung gilt für folgende Geräteausführungen:

- Hardware ab 1.0.0
- Software ab 1.3.0
- Nur für Geräteausführungen ohne SIL-Qualifikation

Komponenten

Der VEGACAL 64 besteht aus den Komponenten:

- Prozessanschluss mit Messsonde
- Gehäuse mit Elektronik
- Gehäusedeckel

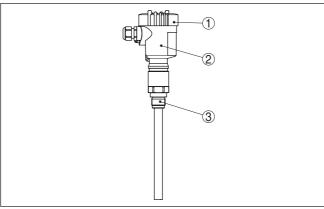


Abb. 1: VEGACAL 64, Stabausführung mit Kunststoffgehäuse

- 1 Gehäusedeckel
- 2 Gehäuse mit Elektronik
- 3 Prozessanschluss

Typschild

Das Typschild enthält die wichtigsten Daten zur Identifikation und zum Einsatz des Gerätes:

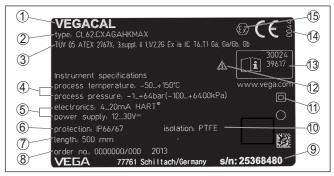


Abb. 2: Aufbau des Typschildes (Beispiel)

- 1 Gerätetyp
- 2 Produktcode
- 3 Zulassungen
- 4 Prozess- und Umgebungstemperatur, Prozessdruck
- 5 Versorgung und Signalausgang Elektronik
- 6 Schutzart
- 7 Sondenlänge
- 8 Auftragsnummer
- 9 Seriennummer des Gerätes
- 10 Werkstoff medienberührte Teile
- 11 Symbol für Geräteschutzklasse
- 12 Hinweis zur Beachtung der Gerätedokumentation
- 13 ID-Nummern Gerätedokumentation
- 14 Notifizierte Stelle für die CE-Kennzeichnung
- 15 Zulassungsrichtlinien

Die Seriennummer ermöglicht es Ihnen, über "www.vega.com", "Suche" die Lieferdaten des Gerätes anzuzeigen. Zusätzlich zum Typschild außen am Gerät finden Sie die Seriennummer auch im Inneren des Gerätes.

Seriennummer - Gerätesuche

Das Typschild enthält die Seriennummer des Gerätes. Damit finden Sie über unsere Homepage folgende Daten zum Gerät:

- Produktcode (HTML)
- Lieferdatum (HTML)
- Auftragsspezifische Gerätemerkmale (HTML)
- Betriebsanleitung und Kurz-Betriebsanleitung zum Zeitpunkt der Auslieferung (PDF)
- Prüfzertifikat (PDF) optional

Gehen Sie auf "www.vega.com" und geben Sie im Suchfeld die Seriennummer Ihres Gerätes ein.

Alternativ finden Sie die Daten über Ihr Smartphone:

- VEGA Tools-App aus dem "Apple App Store" oder dem "Google Play Store" herunterladen
- QR-Code auf dem Typschild des Gerätes scannen oder
- · Seriennummer manuell in die App eingeben

3.2 Arbeitsweise

Anwendungsbereich

Der VEGACAL 64 ist ein Füllstandsensor für leitfähige und nicht leitfähige Flüssigkeiten.

Die Stabmesssonde ist vollisoliert und eignet sich vor allem für zähflüssige und anhaftende Füllgüter.

Funktionsprinzip

Messelektrode, Medium und Behälterwand bilden einen elektrischen Kondensator. Die Kapazität des Kondensators wird im wesentlichen durch drei Faktoren beeinflusst.

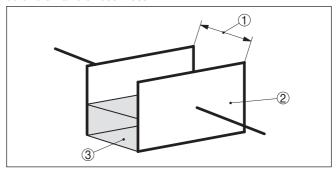


Abb. 3: Funktionsprinzip - Plattenkondensator

- 1 Abstand der Elektrodenflächen
- 2 Größe der Elektrodenflächen
- 3 Art des Dielektrikums zwischen den Elektroden

Die Elektrode und die Behälterwand sind dabei die Kondensatorplatten. Das Medium und die Isolation sind das Dielektrikum. Bedingt durch die höhere Dielektrizitätszahl der Isolation und des leitfähigen Mediums gegenüber Luft nimmt die Kapazität des Kondensators bei steigender Bedeckung der Elektrode zu.

Die Kapazitätsänderung sowie die Widerstandsänderung werden vom Elektronikeinsatz in ein füllstandproportionales Signal umgewandelt.

Spannungsversorgung

4 ... 20 mA/HART-Zweileiterelektronik für Spannungsversorgung und Messwertübertragung auf derselben Leitung.

Der Spannungsversorgungsbereich kann sich je nach Geräteausführung unterscheiden.

Die Daten für die Spannungsversorgung finden Sie in Kapitel "Technische Daten"

Die Hintergrundbeleuchtung des Anzeige- und Bedienmoduls wird durch den Sensor gespeist. Voraussetzung ist hierbei eine bestimmte Höhe der Betriebsspannung. Die genauen Spannungsangaben finden Sie in Kapitel "*Technische Daten*".

Die optionale Heizung erfordert eine eigenständige Spannungsversorgung. Details finden Sie in der Zusatzanleitung "Heizung für Anzeige- und Bedienmodul".

Diese Funktion ist für zugelassene Geräte generell nicht verfügbar.

3.3 Bedienung

Das Gerät bietet folgende Bedienmöglichkeiten:

- Mit dem Anzeige- und Bedienmodul
- Mit dem passenden VEGA-DTM in Verbindung mit einer Bediensoftware nach dem FDT/DTM-Standard, z. B. PACTware und PC
- Mit den herstellerspezifischen Bedienprogrammen AMS™ oder PDM
- Mit einem HART-Handbediengerät

3.4 Verpackung, Transport und Lagerung

Verpackung

Ihr Gerät wurde auf dem Weg zum Einsatzort durch eine Verpackung geschützt. Dabei sind die üblichen Transportbeanspruchungen durch eine Prüfung in Anlehnung an ISO 4180 abgesichert.

Bei Standardgeräten besteht die Verpackung aus Karton, ist umweltverträglich und wieder verwertbar. Bei Sonderausführungen wird zusätzlich PE-Schaum oder PE-Folie verwendet. Entsorgen Sie das anfallende Verpackungsmaterial über spezialisierte Recyclingbetriehe

Transport

Der Transport muss unter Berücksichtigung der Hinweise auf der Transportverpackung erfolgen. Nichtbeachtung kann Schäden am Gerät zur Folge haben.

Transportinspektion

Die Lieferung ist bei Erhalt unverzüglich auf Vollständigkeit und eventuelle Transportschäden zu untersuchen. Festgestellte Transportschäden oder verdeckte Mängel sind entsprechend zu behandeln.

Lagerung

Die Packstücke sind bis zur Montage verschlossen und unter Beachtung der außen angebrachten Aufstell- und Lagermarkierungen aufzubewahren.

Packstücke, sofern nicht anders angegeben, nur unter folgenden Bedingungen lagern:

- Nicht im Freien aufbewahren
- Trocken und staubfrei lagern
- Keinen aggressiven Medien aussetzen
- Vor Sonneneinstrahlung schützen
- Mechanische Erschütterungen vermeiden

Lager- und Transporttemperatur

- Lager- und Transporttemperatur siehe Kapitel "Anhang Technische Daten Umgebungsbedingungen"
- Relative Luftfeuchte 20 ... 85 %

Heben und Tragen

10

Bei Gerätegewichten über 18 kg (39.68 lbs) sind zum Heben und Tragen dafür geeignete und zugelassene Vorrichtungen einzusetzen.

3.5 Zubehör

Die Anleitungen zu den aufgeführten Zubehörteilen finden Sie im Downloadbereich auf unserer Homepage.

Anzeige- und Bedienmodul

Das Anzeige- und Bedienmodul dient zur Messwertanzeige, Bedienung und Diagnose.

Das integrierte Bluetooth-Modul (optional) ermöglicht die drahtlose

VEGACONNECT

Bedienung über Standard-Bediengeräte.

VEGADIS 81

kommunikationsfähiger Geräte an die USB-Schnittstelle eines PCs.

Der Schnittstellenadapter VEGACONNECT ermöglicht die Anbindung

Das VEGADIS 81 ist eine externe Anzeige- und Bedieneinheit für VEGA-plics®-Sensoren.

VEGADIS 82

Das VEGADIS 82 ist geeignet zur Messwertanzeige und Bedienung von Sensoren mit HART-Protokoll. Es wird in die 4 ... 20 mA/HART-Signalleitung eingeschleift.

PLICSMOBILE T81

Das PLICSMOBILE T81 ist eine externe GSM/GPRS/UMTS-Funkeinheit zur Übertragung von Messwerten und zur Fernparametrierung von HART-Sensoren.

Externes Gehäuse

Wenn das Standard-Sensorgehäuse zu groß ist oder starke Vibrationen auftreten, können Sie ein externes Gehäuse verwenden.

Das Sensorgehäuse ist dann aus Edelstahl. Die Elektronik befindet sich im externen Gehäuse, das mit einem Verbindungskabel bis zu 10 m (32.8 ft) vom Sensor entfernt montiert werden kann.

Es stehen drei verschiedene externe Sensorgehäuse zur Verfügung.

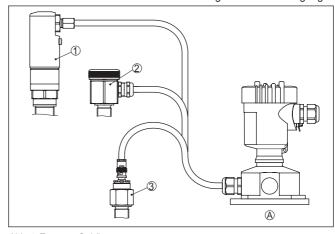


Abb. 4: Externes Gehäuse

- A Gerätegehäuse
- Sensorgehäuse, Edelstahl (316L), IP68 (10 bar)
- Sensorgehäuse, Edelstahl (316L), IP67
- 3 Sensorgehäuse, Edelstahl (316L), BNC-Stecker IP54

Schutzhaube

Die Schutzhaube schützt das Sensorgehäuse vor Verschmutzung und starker Erwärmung durch Sonneneinstrahlung.

Flansche

Gewindeflansche stehen in verschiedenen Ausführungen nach folgenden Standards zur Verfügung: DIN 2501, EN 1092-1, BS 10, ASME B 16.5, JIS B 2210-1984, GOST 12821-80.

Abschirmrohradapter

Es gibt unterschiedliche Gründe für den Einsatz eines Abschirmrohradapters.

Kondensatbildung

Bei starker Kondensatbildung kann das ablaufende Kondenswasser eine Veränderung der Messgenauigkeit verursachen. Die geeignete Ausführung ist die **Abschirmung gegen Kondensatbildung**. Das Kondensat kann außen am Abschirmrohradapter abtropfen.

Typische Anwendungsgebiete für Abschirmrohradapter sind z. B. Kondensatbildung oder Stutzen. Neben der Standardausführung gibt es eine zweite Ausführung für Vakuum mit einer speziellen Abdichtung. Wenn der Abschirmrohradapter in Flüssigkeit eintaucht, empfehlen wir die vakuumdichte Ausführung.

Stutzen

Bei langen Stutzen kann ein Abschirmrohr die Empfindlichkeit der Messsonde erhöhen, indem es die Einflüsse des Stutzens kompensiert. Die geeignete Ausführung ist die **Kapazitive Abschirmung**, **vakuumdicht**.

Bei seitlichem Einbau der Messsonde können sich Ablagerungen im Stutzen ansammeln. Ein Abschirmrohr macht den umschlossenen Teil der Messsonde inaktiv und damit unempfindlich gegen die Einflüsse der Ablagerungen und des Stutzens. Damit schließt der Abschirmrohradapter wechselnde Einflüsse durch Medium aus und sorgt für stabile Messverhältnisse. Die geeignete Ausführung ist die Kapazitive Abschirmung, vakuumdicht.

4 Montieren

4.1 Allgemeine Hinweise

Prozessbedingungen

Hinweis:

Das Gerät darf aus Sicherheitsgründen nur innerhalb der zulässigen Prozessbedingungen betrieben werden. Die Angaben dazu finden Sie in Kapitel "*Technische Daten*" der Betriebsanleitung bzw. auf dem Typschild.

Stellen Sie deshalb vor Montage sicher, dass sämtliche im Prozess befindlichen Teile des Gerätes für die auftretenden Prozessbedingungen geeignet sind.

Dazu zählen insbesondere:

- Messaktiver Teil
- Prozessanschluss
- Prozessdichtung

Prozessbedingungen sind insbesondere:

- Prozessdruck
- Prozesstemperatur
- Chemische Eigenschaften der Medien
- Abrasion und mechanische Einwirkungen

Montageposition

Wählen Sie die Montageposition möglichst so, dass Sie das Gerät beim Montieren und Anschließen sowie für das spätere Nachrüsten eines Anzeige- und Bedienmoduls gut erreichen können. Hierzu lässt sich das Gehäuse ohne Werkzeug um 330° drehen. Darüber hinaus können Sie das Anzeige- und Bedienmodul in 90°-Schritten verdreht einsetzen.

Einschrauben

Geräte mit Gewindeanschluss werden mit einem passenden Schraubenschlüssel über den Sechskant am Prozessanschluss eingeschraubt.

Schlüsselweite siehe Kapitel "Maße".

Warnung:

Das Gehäuse oder der elektrische Anschluss dürfen nicht zum Einschrauben verwendet werden! Das Festziehen kann Schäden, z. B. je nach Geräteausführung an der Drehmechanik des Gehäuses verursachen.

Schweißarbeiten

Nehmen Sie vor Schweißarbeiten am Behälter den Elektronikeinsatz aus dem Sensor. Sie vermeiden damit Beschädigungen an der Elektronik durch induktive Einkopplungen.

Erden Sie die Messsonde vor dem Schweißen direkt am Stab bzw. am Seil.

Handhabung

Bei Gewindeausführungen darf das Gehäuse nicht zum Einschrauben verwendet werden! Das Festziehen kann Schäden an der Drehmechanik des Gehäuses verursachen.

Verwenden Sie zum Einschrauben den dafür vorgesehenen Sechskant.

Schutz vor Feuchtigkeit

Verwenden Sie die empfohlenen Kabel (siehe Kapitel "An die Spannungsversorgung anschließen") und ziehen Sie die Kabelverschraubung fest an.

Sie schützen Ihr Gerät zusätzlich gegen das Eindringen von Feuchtigkeit, indem Sie das Anschlusskabel vor der Kabelverschraubung nach unten führen. Regen- und Kondenswasser können so abtropfen. Dies gilt vor allem bei Montage im Freien, in Räumen, in denen mit Feuchtigkeit zu rechnen ist (z. B. durch Reinigungsprozesse) oder an gekühlten bzw. beheizten Behältern.

Stellen Sie zur Erhaltung der Geräteschutzart sicher, dass der Gehäusedeckel im Betrieb geschlossen und ggfs. gesichert ist.

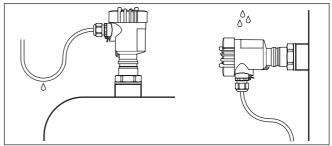


Abb. 5: Maßnahmen gegen das Eindringen von Feuchtigkeit

Druck/Vakuum

Bei Über- oder Unterdruck im Behälter müssen Sie den Prozessanschluss abdichten. Prüfen Sie vor dem Einsatz, ob der Dichtungswerkstoff gegenüber dem Medium und der Prozesstemperatur beständig ist.

Den maximal zulässigen Druck können Sie dem Kapitel "*Technische Daten*" oder dem Typschild des Sensors entnehmen.

Isolierende Maßnahmen, wie z. B. das Umwickeln des Gewindes mit Teflonband, können bei metallischen Behältern die notwendige elektrische Verbindung unterbrechen. Erden Sie deshalb die Messsonde am Behälter oder verwenden Sie leitendes Dichtungswerkstoff.

Behältermaterial

Metallbehälter

Achten Sie darauf, dass der mechanische Anschluss der Messsonde mit dem Behälter elektrisch leitend verbunden ist, um eine ausreichende Massezuführung sicherzustellen.

Verwenden Sie leitfähige Dichtungen wie z. B. Kupfer und Blei etc. Isolierende Maßnahmen, wie z. B. das Umwickeln des Gewindes mit Teflonband, können bei metallischen Behältern die notwendige elektrische Verbindung unterbrechen. Erden Sie deshalb die Messsonde am Behälter oder verwenden Sie leitendes Dichtungsmaterial.

Nicht leitende Behälter

Bei nicht leitenden Behältern, z. B. Kunststofftanks, muss der zweite Pol des Kondensators separat bereitgestellt werden.

Behälterformen

Die kapazitive Messsonde sollte immer möglichst senkrecht bzw. parallel zu einer Gegenelektrode montiert sein. Dies gilt vor allem bei nicht leitfähigem Medium.

In liegenden Rundtanks, Kugeltanks oder anderen asymmetrischen Tankformen ergeben sich durch den unterschiedlichen Abstand zur Behälterwand unlineare Füllstandwerte.

Verwenden Sie in nicht leitfähigen Medien ein Hüllrohr oder linearisieren Sie das Messsignal.

Kabeleinführungen - NPT-Gewinde Kabelverschraubungen

Metrische Gewinde

Bei Gerätegehäusen mit metrischen Gewinden sind die Kabelverschraubungen werkseitig eingeschraubt. Sie sind durch Kunststoffstopfen als Transportschutz verschlossen.

Sie müssen diese Stopfen vor dem elektrischen Anschluss entfernen.

NPT-Gewinde

Bei Gerätegehäusen mit selbstdichtenden NPT-Gewinden können die Kabelverschraubungen nicht werkseitig eingeschraubt werden. Die freien Öffnungen der Kabeleinführungen sind deshalb als Transportschutz mit roten Staubschutzkappen verschlossen.

Sie müssen diese Schutzkappen vor der Inbetriebnahme durch zugelassene Kabelverschraubungen ersetzen oder mit geeigneten Blindstopfen verschließen.

4.2 Montagehinweise

Montageposition

Die Messsonde darf während des Betriebs keine Einbauten oder die Behälterwand berühren. Außerdem kann sich der Messwert verändern, wenn der Abstand zur Behälterwand stark variiert. Falls erforderlich, sollten Sie deshalb das Sondenende isolierend fixieren.

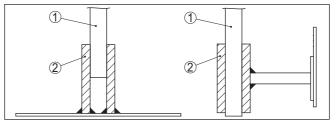


Abb. 6: Messsonde fixieren

- 1 Messsonde
- 2 Kunststoffbuchse

Bei Behältern mit konischem Boden kann es vorteilhaft sein, den Sensor in Behältermitte zu montieren, da die Messung dann bis zum Boden möglich ist.

Einströmendes Medium

Wenn das Gerät im Befüllstrom eingebaut ist, kann dies zu unerwünschten Fehlmessungen führen. Montieren Sie das Gerät deshalb an einer Stelle im Behälter, wo keine störenden Einflüsse, wie z. B. von Befüllöffnungen, Rührwerken etc. auftreten können.

Dies gilt vor allem für Gerätetypen mit langer Elektrode.

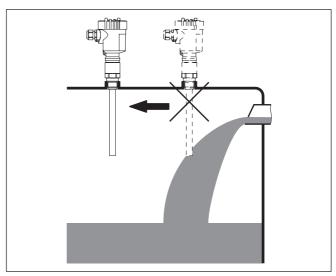


Abb. 7: Einströmendes Medium

5 An die Spannungsversorgung anschließen

Sicherheitshinweise

5.1 Anschluss vorbereiten

Beachten Sie grundsätzlich folgende Sicherheitshinweise:

- Elektrischen Anschluss nur durch ausgebildetes und vom Anlagenbetreiber autorisiertes Fachpersonal durchführen
- Falls Überspannungen zu erwarten sind, Überspannungsschutzgeräte installieren

Warnung:

Nur in spannungslosem Zustand anschließen bzw. abklemmen.

Spannungsversorgung

Die Spannungsversorgung und das Stromsignal erfolgen über dasselbe zweiadrige Anschlusskabel. Die Betriebsspannung kann sich je nach Geräteausführung unterscheiden.

Die Daten für die Spannungsversorgung finden Sie in Kapitel "Technische Daten".

Sorgen Sie für eine sichere Trennung des Versorgungskreises von den Netzstromkreisen nach DIN EN 61140 VDE 0140-1.

Versorgen Sie das Gerät über einen energiebegrenzten Stromkreis nach IEC 61010-1, z. B. über ein Netzteil nach Class 2.

Berücksichtigen Sie folgende zusätzliche Einflüsse für die Betriebsspannung:

- Geringere Ausgangsspannung des Speisegerätes unter Nennlast (z. B. bei einem Sensorstrom von 20,5 mA oder 22 mA bei Ausfallsignal)
- Einfluss weiterer Geräte im Stromkreis (siehe Bürdenwerte in Kapitel "Technische Daten")

Anschlusskabel

Das Gerät wird mit handelsüblichem zweiadrigem Kabel ohne Abschirmung angeschlossen. Falls elektromagnetische Einstreuungen zu erwarten sind, die über den Prüfwerten der EN 61326-1 für industrielle Bereiche liegen, sollte abgeschirmtes Kabel verwendet werden.

Verwenden Sie Kabel mit rundem Querschnitt bei Geräten mit Gehäuse und Kabelverschraubung. Verwenden Sie eine zum Kabeldurchmesser passende Kabelverschraubung, um die Dichtwirkung der Kabelverschraubung (IP-Schutzart) sicher zu stellen.

Im HART-Multidropbetrieb empfehlen wir, generell abgeschirmtes Kabel zu verwenden.

Kabelverschraubungen

Metrische Gewinde:

Bei Gerätegehäusen mit metrischen Gewinden sind die Kabelverschraubungen werkseitig eingeschraubt. Sie sind durch Kunststoffstopfen als Transportschutz verschlossen.

Hinweis:

Sie müssen diese Stopfen vor dem elektrischen Anschluss entfernen.

NPT-Gewinde:

Bei Gerätegehäusen mit selbstdichtenden NPT-Gewinden können die Kabelverschraubungen nicht werkseitig eingeschraubt werden. Die freien Öffnungen der Kabeleinführungen sind deshalb als Transportschutz mit roten Staubschutzkappen verschlossen.

Hinweis

Sie müssen diese Schutzkappen vor der Inbetriebnahme durch zugelassene Kabelverschraubungen ersetzen oder mit geeigneten Blindstopfen verschließen.

Beim Kunststoffgehäuse muss die NPT-Kabelverschraubung bzw. das Conduit-Stahlrohr ohne Fett in den Gewindeeinsatz geschraubt werden.

Maximales Anzugsmoment für alle Gehäuse siehe Kapitel "Technische Daten".

Kabelschirmung und Erdung

Wenn abgeschirmtes Kabel erforderlich ist, empfehlen wir, die Kabelschirmung beidseitig auf Erdpotenzial zu legen. Im Sensor wird die Kabelschirmung direkt an die innere Erdungsklemme angeschlossen. Die äußere Erdungsklemme am Gehäuse muss niederimpedant mit dem Erdpotenzial verbunden sein.

Bei Ex-Anlagen erfolgt die Erdung gemäß den Errichtungsvorschriften.

Bei Galvanikanlagen sowie bei Anlagen für kathodischen Korrosionsschutz ist zu berücksichtigen, dass erhebliche Potenzialunterschiede bestehen. Dies kann bei beidseitiger Schirmerdung zu unzulässig hohen Schirmströmen führen.

Hinweis:

Die metallischen Teile des Gerätes (Prozessanschluss, Messwertaufnehmer, Hüllrohr etc.) sind leitend mit der inneren und äußeren Erdungsklemme am Gehäuse verbunden. Diese Verbindung besteht entweder direkt metallisch oder bei Geräten mit externer Elektronik über die Abschirmung der speziellen Verbindungsleitung.

Angaben zu den Potenzialverbindungen innerhalb des Gerätes finden Sie in Kapitel "*Technische Daten*".

5.2 Anschlussschritte

Gehen Sie wie folgt vor:

- 1. Gehäusedeckel abschrauben
- Evtl. vorhandenes Anzeige- und Bedienmodul durch Drehen nach links herausnehmen
- Überwurfmutter der Kabelverschraubung lösen und Verschlussstopfen herausnehmen
- Anschlusskabel ca. 10 cm (4 in) abmanteln, Aderenden ca. 1 cm (0.4 in) abisolieren
- 5. Kabel durch die Kabelverschraubung in den Sensor schieben
- Öffnungshebel der Klemmen mit einem Schraubendreher anheben (siehe nachfolgende Abbildung)

7. Aderenden nach Anschlussplan in die offenen Klemmen stecken

Abb 8: Anschlussschritte 6 und 7

- Öffnungshebel der Klemmen nach unten drücken, die Klemmenfeder schließt hörbar
- Korrekten Sitz der Leitungen in den Klemmen durch leichtes Ziehen pr
 üfen
- Abschirmung an die innere Erdungsklemme anschließen, die äußere Erdungsklemme mit dem Potenzialausgleich verbinden
- Überwurfmutter der Kabelverschraubung fest anziehen. Der Dichtring muss das Kabel komplett umschließen
- 12. Gehäusedeckel verschrauben

Der elektrische Anschluss ist somit fertig gestellt.

5.3 Anschlussplan - Einkammergehäuse

Die nachfolgenden Abbildungen gelten sowohl für die Nicht-Ex-, als auch für die Ex ia-Ausführung.

Gehäuseübersicht

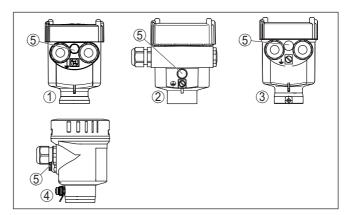


Abb. 9: Werkstoffvarianten Einkammergehäuse

- 1 Kunststoff
- 2 Aluminium
- 3 Edelstahl (Feinguss)
- 4 Edelstahl (elektropoliert)
- 5 Filterelement für Luftdruckausgleich für alle Werkstoffvarianten. Blindstopfen bei Ausführung IP66/IP68 (1 bar) für Aluminium und Edelstahl

Elektronik- und Anschlussraum

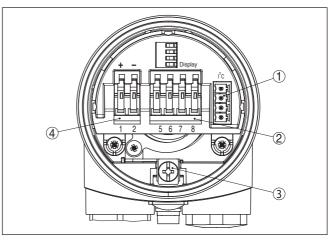


Abb. 10: Elektronik- und Anschlussraum - Einkammergehäuse

- 1 Steckverbinder für VEGACONNECT (I²C-Schnittstelle)
- 2 Federkraftklemmen zum Anschluss der externen Anzeige VEGADIS 81
- 3 Erdungsklemme zum Anschluss der Kabelschirmung
- 4 Federkraftklemmen für die Spannungsversorgung

Anschlussplan

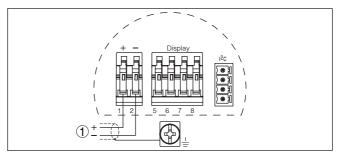


Abb. 11: Anschlussplan - Einkammergehäuse

1 Spannungsversorgung, Signalausgang

5.4 Anschlussplan - Zweikammergehäuse

Die nachfolgenden Abbildungen gelten sowohl für die Nicht-Ex-, als auch für die Ex ia-Ausführung.

Gehäuseübersicht

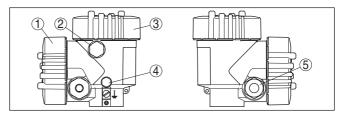


Abb. 12: Zweikammergehäuse

- 1 Gehäusedeckel Anschlussraum
- 2 Blindstopfen oder M12 x 1-Anschlussstecker für VEGADIS 81 (optional)
- 3 Gehäusedeckel Elektronikraum
- 4 Filterelement für Luftdruckausgleich
- 5 Kabelverschraubung

Elektronikraum

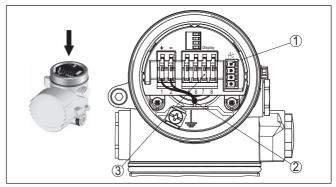


Abb. 13: Elektronikraum - Zweikammergehäuse

- 1 Steckverbinder für VEGACONNECT (I²C-Schnittstelle)
- 2 Interne Verbindungsleitung zum Anschlussraum
- 3 Anschlussklemmen für VEGADIS 81

Anschlussraum

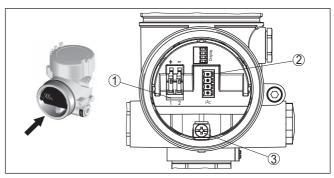


Abb. 14: Anschlussraum - Zweikammergehäuse

- 1 Federkraftklemmen für die Spannungsversorgung
- 2 Steckverbinder für Service (I²C-Schnittstelle)
- 3 Erdungsklemme zum Anschluss der Kabelschirmung

Anschlussplan

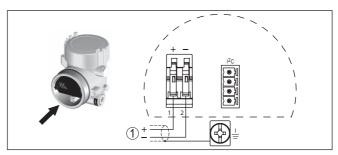


Abb. 15: Anschlussplan - Zweikammergehäuse

1 Spannungsversorgung, Signalausgang

Gehäuseübersicht

5.5 Anschlussplan - Ex d-Zweikammergehäuse

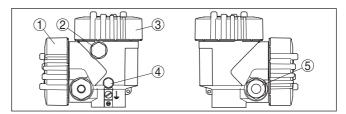


Abb. 16: Zweikammergehäuse

- 1 Gehäusedeckel Anschlussraum
- 2 Blindstopfen oder M12 x 1-Anschlussstecker für VEGADIS 81 (optional)
- 3 Gehäusedeckel Elektronikraum
- 4 Filterelement für Luftdruckausgleich
- 5 Kabelverschraubung

Elektronikraum

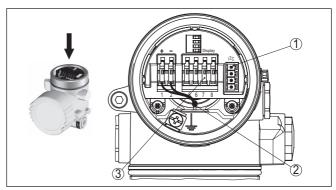


Abb. 17: Elektronikraum - Zweikammergehäuse

- 1 Steckverbinder für VEGACONNECT (I²C-Schnittstelle)
- 2 Interne Verbindungsleitung zum Anschlussraum
- 3 Anschlussklemmen für VEGADIS 81

Anschlussraum

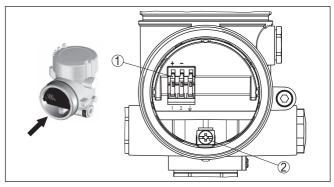


Abb. 18: Anschlussraum - Ex d ia-Zweikammergehäuse

- 1 Federkraftklemmen für die Spannungsversorgung und Kabelschirm
- 2 Erdungsklemme zum Anschluss des Kabelschirms

Anschlussplan

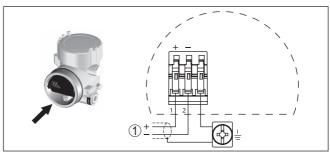


Abb. 19: Anschlussplan - Ex d ia-Zweikammergehäuse

1 Spannungsversorgung, Signalausgang

5.6 Anschlussplan - Ausführung IP66/IP68 (1 bar)

Aderbelegung Anschlusskabel

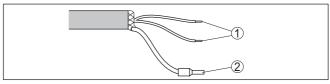


Abb. 20: Aderbelegung Anschlusskabel

- 1 Braun (+) und blau (-) zur Spannungsversorgung bzw. zum Auswertsystem
- 2 Abschirmung

6 In Betrieb nehmen mit dem Anzeige- und Bedienmodul PLICSCOM

6.1 Kurzbeschreibung

Funktion/Aufbau

Das Anzeige- und Bedienmodul dient zur Messwertanzeige, Bedienung und Diagnose. Es kann in folgende Gehäusevarianten und Geräte eingesetzt werden:

- Alle Sensoren der plics®-Gerätefamilie, sowohl im Ein- als auch im Zweikammergehäuse (wahlweise im Elektronik- oder Anschlussraum)
- Externe Anzeige- und Bedieneinheit VEGADIS 61

6.2 Anzeige- und Bedienmodul einsetzen

Anzeige- und Bedienmodul ein-/ausbauen

Das Anzeige- und Bedienmodul kann jederzeit in den Sensor eingesetzt und wieder entfernt werden. Eine Unterbrechung der Spannungsversorgung ist hierzu nicht erforderlich.

Gehen Sie wie folgt vor:

- 1. Gehäusedeckel abschrauben
- Anzeige- und Bedienmodul in die gewünschte Position auf die Elektronik setzen (vier Positionen im 90°-Versatz sind wählbar) und nach rechts bis zum Einrasten drehen.
- Gehäusedeckel mit Sichtfenster fest verschrauben.

Der Ausbau erfolgt sinngemäß umgekehrt.

Das Anzeige- und Bedienmodul wird vom Sensor versorgt, ein weiterer Anschluss ist nicht erforderlich

Abb. 21: Anzeige- und Bedienmodul im Einkammergehäuse einsetzen

•

Hinweis:

Falls Sie das Gerät mit einem Anzeige- und Bedienmodul zur ständigen Messwertanzeige nachrüsten wollen, ist ein erhöhter Deckel mit Sichtfenster erforderlich.

6.3 Bediensystem

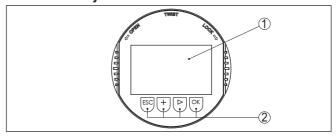


Abb. 22: Anzeige- und Bedienelemente

- 1 LC-Display
- 2 Anzeige der Menüpunktnummer
- 3 Bedientasten

Tastenfunktionen

[OK]-Taste:

- In die Menüübersicht wechseln
- Ausgewähltes Menü bestätigen
- Parameter editieren
- Wert speichern

• [->]-Taste zur Auswahl von:

- Menüwechsel
- Listeneintrag auswählen
- Editierposition wählen

• [+]-Taste:

- Wert eines Parameters verändern

• [ESC]-Taste:

- Eingabe abbrechen
- In übergeordnetes Menü zurückspringen

Bediensystem

Sie bedienen das Gerät über die vier Tasten des Anzeige- und Bedienmoduls. Auf dem LC-Display werden die einzelnen Menüpunkte angezeigt. Die Funktion der einzelnen Tasten finden Sie in der vorhergehenden Darstellung.

Zeitfunktionen

Bei einmaligem Betätigen der [+]- und [->]-Tasten ändert sich der editierte Wert bzw. der Cursor um eine Stelle. Bei Betätigen länger als 1 s erfolgt die Änderung fortlaufend.

Gleichzeitiges Betätigen der **[OK]**- und **[ESC]**-Tasten für mehr als 5 s bewirkt einen Rücksprung ins Grundmenü. Dabei wird die Menüsprache auf "Englisch" umgeschaltet.

Ca. 60 Minuten nach der letzten Tastenbetätigung wird ein automatischer Rücksprung in die Messwertanzeige ausgelöst. Dabei gehen die noch nicht mit *[OK]* bestätigten Werte verloren.

6.4 Inbetriebnahmeschritte

Einschaltphase

Nach dem Anschluss des VEGACAL 64 an die Spannungsversorgung bzw. nach Spannungswiederkehr führt das Gerät zunächst ca. 30 Sekunden lang einen Selbsttest durch:

- Interne Prüfung der Elektronik
- Anzeige des Gerätetyps, der Firmwareversion sowie des Sensor-TAGs (Sensorbezeichnung)
- Ausgangssignal springt kurz (ca. 10 Sekunden) auf den eingestellten Störstrom

Danach wird der zugehörige Strom auf die Leitung ausgegeben (der Wert entspricht dem aktuellen Füllstand sowie den bereits durchgeführten Einstellungen, z. B. dem Werksabgleich).

Adresseinstellung HART-Multidrop

Bei HART-Multidrop-Betrieb (mehrere Sensoren an einem Eingang) muss vor der weiteren Parametrierung zuerst die Adresseinstellung vorgenommen werden. Eine nähere Beschreibung hierzu finden Sie in der Betriebsanleitung "Anzeige- und Bedienmodul" oder in der Online-Hilfe von PACTware bzw. DTM.

Parametrierung

Der VEGACAL 64 misst die Kapazität des jeweils enthaltenen Mediums. Um die eigentliche Füllguthöhe anzeigen zu können, muss eine Zuweisung der gemessenen Kapazität zur prozentualen Höhe erfolgen. Zur Durchführung dieses Abgleichs wird die Kapazität bei leerem und vollem Behälter eingegeben.

Wenn der Behälter nicht komplett entleert oder befüllt werden kann, können Sie den Ableich auch mit zwei anderen bekannten Füllhöhen durchführen - beispielsweise mit 10 % und 90 %. Die Füllhöhen für den Leer- und Vollabgleich sollten aber eine möglichst große Differenz zueinander haben.

Anhand dieser Eingaben wird dann die eigentliche Füllhöhe errechnet.

Der VEGACAL 64 muss dazu eingebaut sein. Für diesen Abgleich ist eine Änderung des Füllstandes erforderlich.

Im Hauptmenüpunkt "Grundeinstellung" sollten zur optimalen Einstellung der Messung die einzelnen Untermenüpunkte nacheinander ausgewählt und mit den richtigen Parametern versehen werden.

Tipp:

Wenn das Anzeige- und Bedienmodul als Anzeige an der Messsonde verbleibt, empfiehlt es sich, die Sensordaten im Anzeige- und Bedienmodul zu speichern.

Nutzen Sie hierzu die Kopierfunktion "Sensordaten kopieren".

Beginnen Sie nun Ihre Parametrierung mit folgenden Menüpunkten der Grundeinstellung:

Min.-Abgleich durchführen

Protokollieren Sie zur Sicherheit die Abgleichwerte des Voll- und Leerabgleichs. Falls ein Abgleichvorgang fehlschlägt, müssen Sie die Behälterbefüllung nicht mehr verändern.

Im Falle eines Elektroniktauschs können diese Werte noch einmal hilfreich sein.

	%	Wert
Leerabgleich		
Vollabgleich		

Tab. 1: Abgleichprotokoll

Tipp:

Für den Min.-Abgleich benötigen Sie den Behälter einmal möglichst weit entleert und für den Max.-Abgleich möglichst hoch befüllt. Sollte der Behälter bereits befüllt sein, beginnen Sie mit dem Max.-Abgleich.

Hinweis:

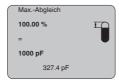
Gehen Sie wie folgt vor:

Wechseln von der Messwertanzeige ins Hauptmenü durch Drücken von [OK].

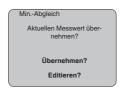
 Den Menüpunkt "Grundeinstellung" mit [->] auswählen und mit [OK] bestätigen. Nun wird der Menüpunkt "Min.-Abgleich" angezeigt.

 Mit [OK] den Abgleichwert zum Editieren vorbereiten. Mit [OK] in das Auswahlfenster wechseln.

- 4. Den aktuellen Messwert übernehmen oder mit "editieren" in das Editierfenster wechseln. Zum Editieren den Cursor mit [->] auf die gewünschte Stelle setzen. Den gewünschten Prozentwert mit [+] einstellen und mit [OK] speichern. Der Cursor springt nun auf den Kapazitätswert.
- 5. Passend zum Prozentwert den unten angezeigten aktuellen Kapazitätswert in pF für den leeren Behälter eingeben.
- 6. Speichern der Einstellungen mit [OK] und wechseln mit [->] zum Max.-Abgleich.


Max.-Abgleich durchführen

Befüllen Sie den Behälter auf einen möglichst hohen Füllstand.



Der Behälter sollte beim Max.-Abgleich möglichst voll sein. Damit wird der Abgleich genauer.

Gehen Sie wie folgt vor:

1. Mit [OK] den Abgleichwert zum Editieren vorbereiten. Mit [OK] in das Auswahlfenster wechseln.

- Den aktuellen Messwert übernehmen oder mit "editieren" in das Editierfenster wechseln. Zum Editieren den Cursor mit [->] auf die gewünschte Stelle setzen. Den gewünschten Prozentwert mit [+] einstellen und mit [OK] speichern. Der Cursor springt nun auf den Kapazitätswert.
- 3. Passend zum Prozentwert den unten angezeigten aktuellen Kapazitätswert in pF für den vollen Behälter eingeben.
- 4. Speichern der Einstellungen mit [OK].

funa

Grundeinstellung - Dämp- Um Schwankungen in der Messwertanzeige z. B. durch unruhige Mediumoberflächen zu unterdrücken, kann eine Dämpfung eingestellt werden. Diese Zeit darf zwischen 0 und 999 Sekunden liegen. Beachten Sie bitte, dass damit aber auch die Reaktionszeit der gesamten

Messung länger wird und der Sensor auf schnelle Messwertveränderungen nur noch verzögert reagiert. In der Regel genügt eine Zeit von wenigen Sekunden, um die Messwertanzeige weit gehend zu beruhigen.

Geben Sie die gewünschten Parameter über die entsprechenden Tasten ein, speichern Sie Ihre Eingaben und springen Sie mit der [->]-Taste zum nächsten Menüpunkt.

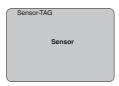
Grundeinstellung - Linearisierungskurve

Eine Linearisierung ist bei allen Behältern erforderlich, bei denen das Behältervolumen nicht linear mit der Füllstandhöhe ansteigt - z. B. bei einem liegenden Rundtank oder Kugeltank - und die Anzeige oder Ausgabe des Volumens gewünscht ist. Für diese Behälter sind entsprechende Linearisierungskurven hinterlegt. Sie geben das Verhältnis zwischen prozentualer Füllstandhöhe und dem Behältervolumen an.

Die Linearisierung gilt für die Messwertanzeige und den Stromausgang. Durch Aktivierung der passenden Kurve wird das prozentuale Behältervolumen korrekt angezeigt. Falls das Volumen nicht in Prozent, sondern beispielsweise in Liter oder Kilogramm angezeigt werden soll, kann zusätzlich eine Skalierung im Menüpunkt "Display" eingestellt werden.

Geben Sie die gewünschten Parameter über die entsprechenden Tasten ein, speichern Sie Ihre Eingaben und springen Sie mit der [->]-Taste zum nächsten Menüpunkt.

Vorsicht:


Beim Einsatz des VEGACAL 64 mit entsprechender Zulassung als Teil einer Überfüllsicherung nach WHG ist folgendes zu beachten:

Wird eine Linearisierungskurve gewählt, so ist das Messsignal nicht mehr zwangsweise linear zur Füllhöhe. Dies ist vom Anwender insbesondere bei der Einstellung des Schaltpunktes am Grenzschalter zu berücksichtigen.

Grundeinstellung -Sensor-TAG

In diesem Menüpunkt kann dem Sensor eine eindeutige Bezeichnung gegeben werden, beispielsweise der Messstellenname oder die Tank- bzw. Produktbezeichnung. In digitalen Systemen und der Dokumentation von größeren Anlagen sollte zur genaueren Identifizierung der einzelnen Messstellen eine einmalige Bezeichnung eingegeben werden.

Mit diesem Menüpunkt ist die Grundeinstellung abgeschlossen und Sie können nun mit der [ESC]-Taste ins Hauptmenü zurückspringen.

Display - Anzeigewert

Im Menü "*Display*" definieren Sie, wie der Messwert auf dem Display dargestellt wird.

Folgende Anzeigewerte stehen zur Verfügung:

- Höhe
- Distanz
- Strom
- Skaliert
- Prozent
- Lin.-Prozent

Die Wahl "Skaliert" öffnet die Menüpunkte "Anzeigeeinheit" und "Skalierung". In "Anzeigeeinheit" gibt es folgende Auswahlmöglichkeiten:

- Höhe
- Masse
- Durchfluss
- Volumen
- Ohne Einheit

Je nach Auswahl stehen wiederum unterschiedliche Einheiten zur Verfügung.

Im Menüpunkt "Skalierung" wird der gewünschte Zahlenwert mit Dezimalstelle für 0 % und 100 % des Messwertes eingegeben.

Zwischen dem Anzeigewert im Menü "Display" und der Abgleicheinheit im Menü "Grundeinstellungen" gibt es folgenden Zusammenhang:

Anzeigewert "Distanz": Darstellung des Messwertes in der gewählten Abgleicheinheit, z. B. m(d)

Display - Beleuchtung

Eine werkseitig integrierte Hintergrundbeleuchtung ist über das Bedienmenü zuschaltbar. Die Funktion ist von der Höhe der Betriebsspannung abhängig. Siehe "Technische Daten/Spannungsversorgung".

Zur Erhaltung der Gerätefunktion wird die Beleuchtung bei nicht ausreichender Spannungsversorgung vorübergehend abgeschaltet.

In der Werkseinstellung ist die Beleuchtung ausgeschaltet.

Diagnose - Schleppzeiger

Im Sensor werden jeweils minimale und maximale Messwerte gespeichert. Im Menüpunkt "Schleppzeiger" werden die Werte angezeigt.

- Min.- und Max.-Distanz in m(d)
- Min.- und Max.-Temperatur

Diagnose - Gerätestatus

In diesem Menüpunkt wird der Gerätestatus angezeigt. Wird durch den Sensor kein Fehler erkannt, so erfolgt die Anzeige "OK". Wird ein Fehler festgestellt, so erfolgt sensorspezifisch eine blinkende Fehlermeldung, z. B. "E013". Der Fehler wird zusätzlich im Klartext angezeigt z. B. "Kein Messwert vorhanden".

Information:

Die Fehlermeldung sowie die Klartextanzeige erfolgen ebenfalls in der Messwertanzeige.

Trendaufzeichnung

Mit dem Start einer "**Trendkurve**" werden je nach Sensor bis zu 3000 Messwerte aufgezeichnet. Die Werte können anschließend über einer

Zeitachse dargestellt werden. Die jeweils ältesten Messwerte werden wieder gelöscht.

Die dargestellten Messwerte sind in der Einheit pF.

i

Information:

Bei der Auslieferung vom Werk ist die Trendaufzeichnung nicht aktiv. Sie muss vom Anwender über den Menüpunkt "*Trendkurve starten*" gestartet werden.

Service - Stromausgang

Im Menüpunkt "Stromausgang" legen Sie das Verhalten des Stromausgangs im Betrieb und bei Störungen fest. Die folgende Tabelle zeigt Ihnen die Auswahlmöglichkeiten.

Stromausgang

Kennlinie	4 20 mA
	20 4 mA
Störmode ¹⁾	Wert halten
	20,5 mA
	22 mA
	< 3,6 mA
Min. Strom ²⁾	3,8 mA
	4 mA
Max. Strom ³⁾	20 mA
	20,5 mA

Die fett dargestellten Werte zeigen die Daten der Werkseinstellung. Bei der Betriebsart HART-Multidrop ist der Strom konstant 4 mA. Der Wert ändert sich auch bei Störungen nicht.

Service - Simulation

In diesem Menüpunkt simulieren Sie beliebige Füllstand- und Druckwerte über den Stromausgang. Damit lässt sich der Signalweg, z. B. über nachgeschaltete Anzeigegeräte oder die Eingangskarte des Leitsystems testen.

- Wert des Stromausgangs bei Störung, z.B: wenn kein gültiger Messwert geliefert wird.
- 2) Dieser Wert wird im Betrieb nicht unterschritten.
- 3) Dieser Wert wird im Betrieb nicht überschritten.

Folgende Simulationsgrößen stehen zur Auswahl:

- Prozent
- Strom
- Druck (bei Druckmessumformern)
- Distanz (bei Radar und Geführtes Radar (TDR))

Bei Profibus PA-Sensoren erfolgt die Auswahl des simulierten Wertes über den "Channel" im Menü "Grundeinstellungen".

So starten Sie die Simulation:

- 1. [OK] drücken
- Mit [->] die gewünschte Simulationsgröße auswählen und mit [OK] bestätigen.
- 3. Mit [+] und [->] den gewünschten Zahlenwert einstellen.
- 4. [OK] drücken

Die Simulation läuft nun, dabei wird bei 4 ... 20 mA/HART ein Strom bzw. bei Profibus PA oder Foundation Fieldbus ein digitaler Wert ausgegeben.

So brechen Sie die Simulation ab:

→ [ESC] drücken

Information:

10 Minuten nach der letzten Tastenbetätigung wird die Simulation automatisch abgebrochen.

Reset

Grundeinstellung

Wenn die Funktion "Reset" durchgeführt wird, setzt der Sensor alle Einstellungen auf Werkseinstellung zurück.

Folgende Werte werden rückgesetzt:

Funktion	Resetwert
MaxAbgleich	3000 pF
MinAbgleich	0 pF
Dämpfung ti	0 s
Linearisierung	Linear
Sensor-TAG	Sensor
Display	%
Stromausgang - Kennlinie	4 20 mA
Stromausgang - MaxStrom	20,5 mA
Stromausgang - MinStrom	3,8 mA
Stromausgang - Störung	< 3,6 mA

Spezialparameter

Alle Spezialparameter werden auf Auslieferungszustand zurückgesetzt.

Schleppzeiger

Die Min.- und Max.-Werte werden auf den aktuellen Wert zurückgesetzt.

Service - Sprache

Der Sensor ist werkseitig auf die bestellte Landessprache eingestellt. In diesem Menüpunkt ändern Sie die Landessprache. Folgende Sprachen stehen ab der Softwareversion 3.50 zur Auswahl:

- Deutsch
- English
- Français
- Espanől
- Pycckuu
- Italiano
- Netherlands
- Japanese
- Chinese

Service - HART-Betriebsart

HART bietet die Betriebsarten Standard und Multidrop.

Die Betriebsart Standard mit der festen Adresse 0 bedeutet Ausgabe des Messwertes als 4 ... 20 mA-Signal.

In der Betriebsart Multidrop können bis zu 15 Sensoren an einer Zweidrahtleitung betrieben werden. Jedem Sensor muss eine Adresse zwischen 1 und 15 zugeordnet werden.⁴⁾

In diesem Menüpunkt legen Sie die HART-Betriebsart fest und geben die Adresse bei Multidrop an.

Die Werkseinstellung ist Standard mit Adresse 0.

Sensordaten kopieren

Mit dieser Funktion werden:

- Parametrierdaten aus dem Sensor in das Anzeige- und Bedienmodul gelesen
- ⁴⁾ Das 4 ... 20 mA-Signal des Sensors wird ausgeschaltet, der Sensor nimmt einen konstanten Strom von 4 mA auf. Das Messsignal wird ausschließlich als digitales HART-Signal übertragen.

 Parametrierdaten aus dem Anzeige- und Bedienmodul in den Sensor geschrieben

Die Daten werden in einem EEPROM-Speicher im Anzeige- und Bedienmodul dauerhaft gespeichert und bleiben auch bei Spannungsausfall erhalten. Sie können von dort aus in einen oder mehrere Sensoren geschrieben oder zur Datensicherung für einen eventuellen Sensortausch aufbewahrt werden.

Die Art und der Umfang der kopierten Daten hängen vom jeweiligen Sensor ab.

Information:

Ĭ

Vor dem Schreiben der Daten in den Sensor wird geprüft, ob die Daten zum Sensor passen. Falls die Daten nicht passen, so erfolgt eine Fehlermeldung bzw. wird die Funktion blockiert. Beim Schreiben der Daten in den Sensor wird angezeigt, von welchem Gerätetyp die Daten stammen und welche TAG-Nummer dieser Sensor hatte.

Folgende Punkte werden geprüft:

- Softwareversion
- WHG-Zulassung
- SIL aktiviert
- Messprinzip
- Signalausgang

Service - PIN

In diesem Menüpunkt wird die PIN dauerhaft aktiviert/deaktiviert. Mit der Eingabe einer 4-stelligen PIN schützen Sie die Sensordaten vor unerlaubtem Zugriff und unbeabsichtigten Veränderungen. Ist die PIN dauerhaft aktiviert, so kann sie in jedem Menüpunkt temporär (d. h. für ca. 60 Minuten) deaktiviert werden. Die PIN bei Auslieferung ist 0000.

Bei aktiver PIN sind nur noch folgende Funktionen zulässig:

- Menüpunkte anwählen und Daten anzeigen
- Daten aus dem Sensor in das Anzeige- und Bedienmodul einlesen

Info

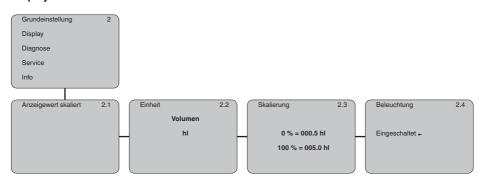
In diesem Menü lesen Sie die wichtigsten Information zum Sensor aus:

- Gerätetyp
- Seriennummer: 8-stellige Zahl, z. B. 12345678

- Kalibrierdatum: Datum der werkseitigen Kalibrierung
- Softwareversion: Ausgabestand der Sensorsoftware

 Letzte Änderung über PC: Das Datum der letzten Änderung von Sensorparametern über PC

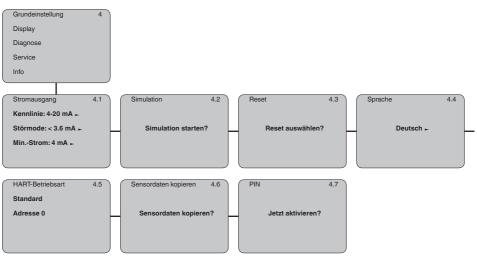
 Sensormerkmale, z. B. Zulassung, Prozessanschluss, Dichtung, Messzelle, Messbereich, Elektronik, Gehäuse, Kabeleinführung, Stecker, Kabellänge etc.

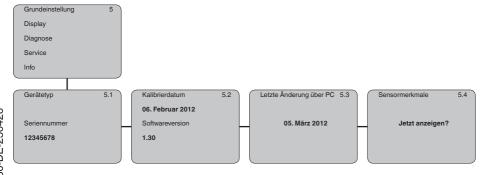


6.5 Menüplan

Grundeinstellung

Display




Diagnose

Service

Info

6.6 Sicherung der Parametrierdaten

Auf Papier

Es wird empfohlen, die eingestellten Daten zu notieren, z. B. in dieser Betriebsanleitung und anschließend zu archivieren. Sie stehen damit für mehrfache Nutzung bzw. für Servicezwecke zur Verfügung.

Im Anzeige- und Bedienmodul

Ist das Gerät mit einem Anzeige- und Bedienmodul ausgestattet, so können die Parametrierdaten darin gespeichert werden. Die Daten bleiben dort auch bei einem Ausfall der Sensorversorgung dauerhaft gespeichert. Die Vorgehensweise wird im Menüpunkt "Sensordaten kopieren" beschrieben.

7 In Betrieb nehmen mit PACTware und anderen Bedienprogrammen

7.1 Den PC anschließen

VEGACONNECT direkt am Sensor

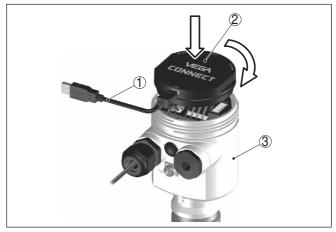


Abb. 23: Anschluss des PCs via Schnittstellenadapter VEGACONNECT direkt am Sensor

- 1 USB-Kabel zum PC
- 2 Schnittstellenadapter VEGACONNECT
- 3 Sensor

VEGACONNECT extern

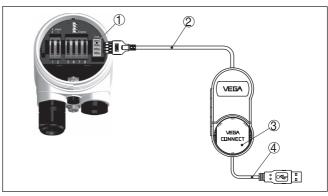


Abb. 24: Anschluss via Schnittstellenadapter VEGACONNECT extern

- 1 I²C-Bus (Com.)-Schnittstelle am Sensor
- 2 I²C-Anschlusskabel des VEGACONNECT
- 3 Schnittstellenadapter VEGACONNECT
- 4 USB-Kabel zum PC

Erforderliche Komponenten:

VEGACAL 64

- PC mit PACTware und passendem VEGA-DTM
- VEGACONNECT
- Speisegerät oder Auswertsystem

VEGACONNECT via HART

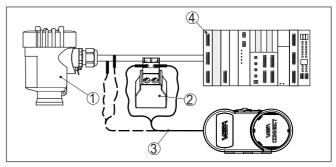


Abb. 25: Anschluss des PCs via HART an die Signalleitung

- 1 VEGACAL 64
- 2 HART-Widerstand 250 Ω (optional je nach Auswertung)
- 3 Anschlusskabel mit 2 mm-Steckerstiften und Klemmen
- 4 Auswertsystem/SPS/Spannungsversorgung

Erforderliche Komponenten:

- VEGACAL 64
- PC mit PACTware und passendem VEGA-DTM
- Schnittstellenadapter VEGACONNECT
- HART-Widerstand ca. 250 Ω
- Speisegerät oder Auswertsystem

Hinweis:

ĭ

Bei Speisegeräten mit integriertem HART-Widerstand (Innenwiderstand ca. $250~\Omega$) ist kein zusätzlicher externer Widerstand erforderlich. Dies gilt z. B. für die VEGA-Geräte VEGATRENN 149A, VEGADIS 371, VEGAMET 381. Auch marktübliche Ex-Speisetrenner sind meist mit einem hinreichend großen Strombegrenzungswiderstand ausgestattet. In diesen Fällen kann das VEGACONNECT 4 parallel zur $4 \dots 20~\text{mA-Leitung}$ angeschlossen werden.

7.2 Parametrierung mit PACTware

Voraussetzungen

Zur Parametrierung des Gerätes über einen Windows-PC ist die Konfigurationssoftware PACTware und ein passender Gerätetreiber (DTM) nach dem FDT-Standard erforderlich. Die jeweils aktuelle PACTware-Version sowie alle verfügbaren DTMs sind in einer DTM Collection zusammengefasst. Weiterhin können die DTMs in andere Rahmenapplikationen nach FDT-Standard eingebunden werden.

Hinweis:

1

Um die Unterstützung aller Gerätefunktionen sicherzustellen, sollten Sie stets die neueste DTM Collection verwenden. Weiterhin sind nicht alle beschriebenen Funktionen in älteren Firmwareversionen enthalten. Die neueste Gerätesoftware können Sie von unserer Homepage

herunterladen. Eine Beschreibung des Updateablaufs ist ebenfalls im Internet verfügbar.

Die weitere Inbetriebnahme wird in der Betriebsanleitung "DTM Collection/PACTware" beschrieben, die jeder DTM Collection beiliegt und über das Internet heruntergeladen werden kann. Weiterführende Beschreibungen sind in der Online-Hilfe von PACTware und den DTMs enthalten.

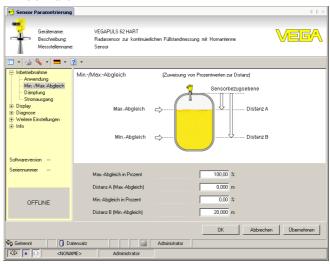


Abb. 26: Beispiel einer DTM-Ansicht

Standard-/Vollversion

Alle Geräte-DTMs gibt es als kostenfreie Standardversion und als kostenpflichtige Vollversion. In der Standardversion sind alle Funktionen für eine komplette Inbetriebnahme bereits enthalten. Ein Assistent zum einfachen Projektaufbau vereinfacht die Bedienung erheblich. Auch das Speichern/Drucken des Projektes sowie eine Import-/Exportfunktion sind Bestandteil der Standardversion.

In der Vollversion ist zusätzlich eine erweiterte Druckfunktion zur vollständigen Projektdokumentation sowie die Speichermöglichkeit von Messwert- und Echokurven enthalten. Weiterhin ist hier ein Tankkalkulationsprogramm sowie ein Multiviewer zur Anzeige und Analyse der gespeicherten Messwert- und Echokurven verfügbar.

Die Standardversion kann unter <u>www.vega.com/downloads</u> heruntergeladen werden. Die Vollversion erhalten Sie auf einer CD über Ihre zuständige Vertretung.

7.3 Parametrierung mit AMS™ und PDM

Für VEGA-Sensoren stehen auch Gerätebeschreibungen als DD bzw. EDD für die Bedienprogramme AMS™ und PDM zur Verfügung. Die Gerätebeschreibungen sind in den aktuellen Versionen von AMS™ und PDM bereits enthalten.

Bei älteren Versionen von AMS™ und PDM können diese kostenfrei über das Internet heruntergeladen werden. Gehen Sie hierzu auf www.vega.com.

7.4 Sicherung der Parametrierdaten

Es wird empfohlen, die Parametrierdaten zu dokumentieren bzw. zu speichern. Sie stehen damit für mehrfache Nutzung bzw. für Servicezwecke zur Verfügung.

Die VEGA DTM Collection und PACTware in der lizenzierten, professionellen Version bieten Ihnen die geeigneten Werkzeuge für eine systematische Projektspeicherung und -dokumentation.

8 In Betrieb nehmen mit Smartphone/Tablet/ PC/Notebook über Bluetooth

8.1 Vorbereitungen

Stellen Sie sicher, dass die Bluetooth-Funktion des Anzeige- und Bedienmoduls aktiviert ist. Dazu muss der Schalter auf der Unterseite auf "On" stehen.

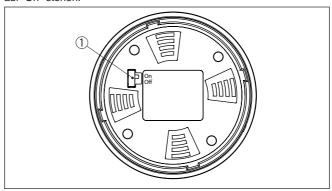


Abb. 27: Bluetooth aktivieren

1 Bluetooth-Schalter On Bluetooth aktiv Off Bluetooth nicht aktiv

Sensor-PIN ändern

Das Sicherheitskonzept der Bluetooth-Bedienung erfordert es zwingend, dass die Werkseinstellung der Sensor-PIN geändert wird. Damit wird ein unbefugter Zugriff auf den Sensor verhindert.

Die Werkseinstellung der Sensor-PIN ist "0000". Ändern Sie zunächst die Sensor-PIN im Bedienmenü des jeweiligen Sensors, z. B. in "1111".

Wechseln Sie mit "OK" zum Eingabemenü.

Ändern Sie die PIN, z. B. in "1111".

Damit ist die PIN dauerhaft deaktiviert.

Die Anzeige wechselt sofort in die Aktivierung der PIN.

Mit "ESC" brechen Sie die Aktivierung der PIN ab.

Mit "OK" können Sie eine PIN eingeben und aktivieren.

Nach Ändern der Sensor-PIN kann die Sensorbedienung wieder freigegeben werden. Für den Zugang (Authentifizierung) mit Bluetooth ist die geänderte PIN weiterhin wirksam.

Information:

Die Bluetooth-Kommunikation funktioniert nur, wenn sich die aktuelle Sensor-PIN von der Werkseinstellung "0000" unterscheidet.

8.2 Verbindung herstellen

Vorbereitungen

Smartphone/Tablet

Starten Sie die Bedien-App und wählen Sie die Funktion "Inbetriebnahme". Das Smartphone/Tablet sucht automatisch Bluetooth-fähige Geräte in der Umgebung.

PC/Notebook

Starten Sie PACTware und den VEGA-Projektassistenten. Wählen Sie die Gerätesuche über Bluetooth und starten Sie die Suchfunk-

tion. Das Gerät sucht automatisch Bluetooth-fähige Geräte in der Umgebung.

Verbindung aufbauen

Die Meldung "Gerätesuche läuft" wird angezeigt.

Alle gefundenen Geräte werden im Bedienfenster aufgelistet. Die Suche wird automatisch kontinuierlich fortgesetzt.

Wählen Sie in der Geräteliste das gewünschte Gerät aus.

Die Meldung "Verbindungsaufbau läuft" wird angezeigt.

Authentifizieren

Für den allerersten Verbindungsaufbau müssen sich Bediengerät und Sensor gegenseitig authentifizieren. Nach erfolgreicher Authentifizierung funktioniert ein weiterer Verbindungsaufbau ohne Authentifizierung.

Geben Sie dann im nächsten Menüfenster zur Authentifizierung die 4-stellige Sensor-PIN ein.

8.3 Sensorparametrierung

Die Sensorparametrierung erfolgt über die Bedien-App beim Smartphone/Tablet bzw. den DTM beim PC/Notebook.

App-Ansicht

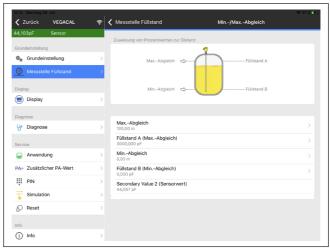


Abb. 28: Beispiel einer App-Ansicht - Inbetriebnahme Sensorabgleich

9 Diagnose und Service

9.1 Instandhalten

Wartung

Bei bestimmungsgemäßer Verwendung ist im Normalbetrieb keine besondere Wartung erforderlich.

Reinigung

Die Reinigung trägt dazu bei, dass Typschild und Markierungen auf dem Gerät sichtbar sind

Beachten Sie hierzu folgendes:

- Nur Reinigungsmittel verwenden, die Gehäuse, Typschild und Dichtungen nicht angreifen
- Nur Reinigungsmethoden einsetzen, die der Geräteschutzart entsprechen

9.2 Störungen beseitigen

Verhalten bei Störungen

Es liegt in der Verantwortung des Anlagenbetreibers, geeignete Maßnahmen zur Beseitigung aufgetretener Störungen zu ergreifen.

Störungsursachen

Das Gerät bietet Ihnen ein Höchstmaß an Funktionssicherheit. Dennoch können während des Betriebes Störungen auftreten. Diese können z. B. folgende Ursachen haben:

- Sensor
- Prozess
- Spannungsversorgung
- Signalauswertung

Störungsbeseitigung

Die ersten Maßnahmen sind die Überprüfung des Ausgangssignals sowie die Auswertung von Fehlermeldungen über das Anzeige- und Bedienmodul. Die Vorgehensweise wird unten beschrieben. Weitere umfassende Diagnosemöglichkeiten bietet Ihnen ein PC mit der Software PACTware und dem passenden DTM. In vielen Fällen lassen sich die Ursachen auf diesem Wege feststellen und die Störungen so beseitigen.

Verhalten nach Störungsbeseitigung

Je nach Störungsursache und getroffenen Maßnahmen sind ggf. die in Kapitel "In Betrieb nehmen" beschriebenen Handlungsschritte erneut zu durchlaufen bzw. auf Plausibilität und Vollständigkeit zu überprüfen.

24 Stunden Service-Hotline

Sollten diese Maßnahmen dennoch zu keinem Ergebnis führen, rufen Sie in dringenden Fällen die VEGA Service-Hotline an unter Tel. +49 1805 858550.

Die Hotline steht Ihnen auch außerhalb der üblichen Geschäftszeiten an 7 Tagen in der Woche rund um die Uhr zur Verfügung.

Da wir diesen Service weltweit anbieten, erfolgt die Unterstützung in englischer Sprache. Der Service ist kostenfrei, es fallen lediglich die üblichen Telefongebühren an.

4 ... 20 mA-Signal überprüfen

Schließen Sie gemäß Anschlussplan ein Multimeter im passenden Messbereich an.

Fehler	Ursache	Beseitigung	
4 20 mA-Signal nicht stabil	Messgröße schwankt	Dämpfung einstellen z. B. über das Anzeige- und Bedienmodul	
4 20 mA-Signal fehlt	Falscher Anschluss	Anschluss nach Kapitel "Anschlussschritte" prüfen und ggf. nach Kapitel "Anschlussplan" korrigieren	
	Spannungsversorgung fehlt	Leitungen auf Unterbrechung prüfen, ggf. reparieren	
	Betriebsspannung zu nied- rig bzw. Bürdenwiderstand zu hoch	Prüfen, ggf. anpassen	
Stromsignal größer 22 mA oder kleiner 3,6 mA	Kurzschluss innerhalb der Messsonde, z.B. durch Feuchtigkeit im Gehäuse	Elektronikeinsatz aus der Messsonde entfernen. Wide stand zwischen den Steckeranschlüssen prüfen. Sieh folgende Anweisungen.	
	Sensorelektronik defekt	Gerät austauschen bzw. zur Reparatur einsenden	

Messsonde prüfen

Widerstand innerhalb der Elektronikeinsatz aus der Messsonde entfernen. Widerstand zwischen den Steckeranschlüssen prüfen.

> Zwischen keinem der Anschlüsse darf eine Verbindung bestehen (hochohmig). Falls dennoch eine Verbindung besteht, Gerät austauschen bzw. zur Reparatur einsenden.

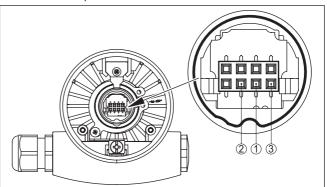


Abb. 29: Widerstand innerhalb der Messsonde prüfen

- Abschirmuna
- 2 Messsonde
- 3 Erdpotenzial

Bei Ex-Anwendungen sind die Regeln für die Zusammenschaltung von eigensicheren Stromkreisen zu beachten.

Fehlermeldungen - Anzeige- und Bedienmodul

Fehler	Ursache	Beseitigung	
E013	Kein Messwert vorhanden	Kurzschluss wegen Brückenbildung durch leitfäh Anhaftungen zwischen Prozessanschluss und Elektrode Anhaftungen beseitigen, evtl. Abschirmrohr mont ren	
	Kurzschluss innerhalb der Messsonde, z.B. durch Feuchtigkeit im Gehäuse	Elektronikeinsatz aus der Messsonde entfernen und den Widerstand zwischen den gekennzeichneten Steckeranschlüssen gemäß Abbildung in Abschnitt "Widerstand innerhalb der Messsonde prüfen" prüfen. Zwischen keinem der Anschlüsse darf eine Verbindung bestehen (hochohmig) Falls dennoch eine Verbindung besteht, Gerät austauschen bzw. zur Reparatur einsenden	
E017	Abgleichspanne zu klein	Abgleich erneut durchführen, dabei den Abstand zwischen Min und MaxAbgleich vergrößern	
E036	Keine lauffähige Sensor- software	Softwareupdate durchführen bzw. Gerät zur Reparatur einsenden	

9.3 Elektronikeinsatz tauschen

Bei einem Defekt kann der Elektronikeinsatz durch den Anwender getauscht werden.

Bei Ex-Anwendungen darf nur ein Gerät und ein Elektronikeinsatz mit entsprechender Ex-Zulassung eingesetzt werden.

Falls vor Ort kein Elektronikeinsatz verfügbar ist, kann dieser über die für Sie zuständige Vertretung bestellt werden. Die Elektronikeinsätze sind auf den jeweiligen Sensor abgestimmt und unterscheiden sich zudem im Signalausgang bzw. in der Spannungsversorgung.

Der neue Elektronikeinsatz muss mit den Werkseinstellungen des Sensors geladen werden. Hierzu gibt es folgende Möglichkeiten:

- Im Werk
- Vor Ort durch den Anwender

In beiden Fällen ist die Angabe der Seriennummer des Sensors erforderlich. Die Seriennummer finden Sie auf dem Typschild des Gerätes, im Inneren des Gehäuses sowie auf dem Lieferschein zum Gerät.

Beim Laden vor Ort müssen zuvor die Auftragsdaten vom Internet heruntergeladen werden (siehe Betriebsanleitung "Elektronikeinsatz").

i

Information:

Alle anwendungsspezifischen Einstellungen müssen neu eingegeben werden. Deshalb müssen Sie nach dem Elektroniktausch eine Neu-Inbetriebnahme durchführen.

Wenn Sie bei der Erst-Inbetriebnahme des Sensors die Daten der Parametrierung gespeichert haben, können Sie diese wieder auf den Ersatz-Elektronikeinsatz übertragen. Eine Neu-Inbetriebnahme ist dann nicht mehr erforderlich.

9.4 Vorgehen im Reparaturfall

Ein Geräterücksendeblatt sowie detallierte Informationen zur Vorgehensweise finden Sie im Downloadbereich auf unserer Homepage. Sie helfen uns damit, die Reparatur schnell und ohne Rückfragen durchzuführen.

Gehen Sie im Reparaturfall wie folgt vor:

- Für jedes Gerät ein Formular ausdrucken und ausfüllen
- Das Gerät reinigen und bruchsicher verpacken
- Das ausgefüllte Formular und eventuell ein Sicherheitsdatenblatt außen auf der Verpackung anbringen
- Adresse für Rücksendung bei der für Sie zuständigen Vertretung erfragen. Sie finden diese auf unserer Homepage.

10 Ausbauen

10.1 Ausbauschritte

Warnung:

Achten Sie vor dem Ausbauen auf gefährliche Prozessbedingungen wie z. B. Druck im Behälter oder Rohrleitung, hohe Temperaturen, aggressive oder toxische Medien etc.

Beachten Sie die Kapitel "Montieren" und "An die Spannungsversorgung anschließen" und führen Sie die dort angegebenen Schritte sinngemäß umgekehrt durch.

10.2 Entsorgen

Führen Sie das Gerät einem spezialisierten Recyclingbetrieb zu und nutzen Sie dafür nicht die kommunalen Sammelstellen.

Entfernen Sie zuvor eventuell vorhandene Batterien, sofern sie aus dem Gerät entnommen werden können und führen Sie diese einer getrennten Erfassung zu.

Sollten personenbezogene Daten auf dem zu entsorgenden Altgerät gespeichert sein, löschen Sie diese vor der Entsorgung.

Sollten Sie keine Möglichkeit haben, das Altgerät fachgerecht zu entsorgen, so sprechen Sie mit uns über Rücknahme und Entsorgung.

11 Anhang

11.1 Technische Daten

Hinweis für zugelassene Geräte

Für zugelassene Geräte (z. B. mit Ex-Zulassung) gelten die technischen Daten in den entsprechenden Sicherheitshinweisen im Lieferumfang. Diese können, z. B. bei den Prozessbedingungen oder der Spannungsversorgung, von den hier aufgeführten Daten abweichen.

Alle Zulassungsdokumente können über unsere Homepage heruntergeladen werden.

Allgemeine Daten

Werkstoff 316L entspricht 1.4404 oder 1.4435

Werkstoffe, medienberührt

- Prozessanschluss - Gewinde 316L, Stahl C22.8 (1.0460), Alloy C22 (2.4602)

Prozessanschluss - Flansch
 316L

- Prozessdichtung Klingersil C-4400 (Geräte mit Einschraubgewinde)

- Isolation (vollisoliert) FEP

- Elektrode (Stab FEP-vollisoliert: 316L

ø 16 mm/0.63 in)

Werkstoffe, nicht medienberührt

Kunststoffgehäuse
 Kunststoff PBT (Polyester)

Aluminium-Druckgussgehäuse
 Aluminium-Druckguss AlSi10Mg, pulverbeschichtet

(Basis: Polyester)

Edelstahlgehäuse (Feinguss)
Edelstahlgehäuse (elektropoliert)
Dichtung zwischen Gehäuse und
Silikon

Dichtung zwischen Gehäuse und Gehäusedeckel

- Sichtfenster im Gehäusedeckel

Kunststoffgehäuse: Polycarbonat (UL746-C gelistet)

(optional) Metallgehäuse: Glas⁵⁾

- Erdungsklemme 316L

Kabelverschraubung
 PA, Edelstahl, Messing

Dichtung KabelverschraubungVerschlussstopfen Kabelverschrau-PA

bung

Prozessanschlüsse

- Rohrgewinde, zylindrisch (DIN 3852- G½, G¾, G1, G1½

A)

Rohrgewinde, konisch
 NPT, 34 NPT, 1 NPT, 1½ NPT

(ASME B1.20.1)

- Flansche DIN ab DN 25, ASME ab 1"

Gewicht

- Gerätegewicht (je nach Prozessan- 0,8 ... 4 kg (0.18 ... 8.82 lbs)

schluss)

5) Aluminium-, Edelstahl (Feinguss)- und Ex d-Gehäuse

- Stabgewicht: ø 16 mm (0.63 in) 1100 g/m (12 oz/ft)

Sensorlänge (L) 0,2 ... 4 m (0.656 ... 13.12 ft)

Max. seitliche Belastung 10 Nm (7.4 lbf ft)
Max. Anzugsmoment (Prozessanschluss 100 Nm (73 lbf ft)

- Gewinde)

Anzugsmoment für NPT-Kabelverschraubungen und Conduit-Rohre

– Kunststoffgehäuse max. 10 Nm (7.376 lbf ft)

– Aluminium-/Edelstahlgehäuse max. 50 Nm (36.88 lbf ft)

Ausgangsgröße

Ausgangssignal 4 ... 20 mA/HART

HART-Ausgangswerte

- HART-Wert (Primary Value) Kapazität

- HART-Wert (Secondary Value) Kapazität - skaliert

Erfüllte HART-Spezifikation 5.0

Weitere Informationen zu Manufacturer

ID. Geräte ID. Geräte Revision

Siehe Website der HART Communication Foundation

Signalauflösung 1,6 μA

Ausfallsignal Stromausgang (einstellbar) mA-Wert unverändert 20,5 mA, 22 mA, < 3,6 mA (ein-

stellbar)

Um die selten auftretende Möglichkeit von Hardwareausfällen im Gerät aufzudecken, empfehlen wir,

beide Störwerte zu überwachen.

Strombegrenzung 22 mA

Bürde Siehe Bürdendiagramm unter Spannungsversorgung

Dämpfung (63 % der Eingangsgröße) 0 ... 999 s (einstellbar)
Anstiegszeit 500 ms (ti: 0 s, 0 ... 100 %)

Erfüllte NAMUR-Empfehlung NE 43

Eingangsgröße

Messgröße Füllstand von leitfähigen, anhaftenden Flüssigkeiten

Messprinzip Phasenselektive Admittanzauswertung (PSA)

Messperaich 0 2000 pF

Messbereich 0 ... 3000 pF
Messfrequenz 270 kHz

Messgenauigkeit (nach DIN EN 60770-1)

Referenzbedingungen nach DIN EN 61298-1

- Temperatur +18 ... +30 °C (+64 ... +86 °F)

- Relative Luftfeuchte 45 ... 75 %

- Luftdruck +860 ... +1060 mbar/+86 ... +106 kPa

(+12.5 ... +15.4 psig)

Temperaturfehler

 $- < 120 \, pF$ $< 1 \, pF$

- > 120 pF 1 % des aktuellen Messwerts

Linearitätsfehler < 0,25 % des gesamten Messbereichs

Umgebungsbedingungen

Umgebungs-, Lager- und Transporttem- -40 ... +80 °C (-40 ... +176 °F)

peratur

Prozessbedingungen

Für die Prozessbedingungen sind zusätzlich die Angaben auf dem Typschild zu beachten. Es gilt der jeweils niedrigste Wert.

Prozessdruck -1 ... 64 bar/-100 ... 6400 kPa (-14.5 ... 928 psig)

Prozesstemperatur VEGACAL 64 aus -50 ... +150 °C (-58 ... +302 °F)

316L

Prozesstemperatur VEGACAL 64 aus St -20 ... +150 °C (-4 ... +302 °F)

C22.8

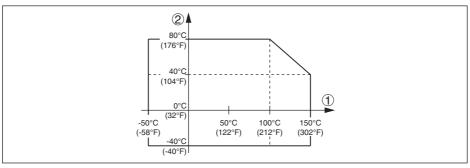


Abb. 30: Umgebungstemperatur - Prozesstemperatur

- 1 Prozesstemperatur
- 2 Umgebungstemperatur

Dielektrizitätszahl ≥ 1.5

Elektromechanische Daten - Ausführung IP66/IP67 und IP66/IP68 (0,2 bar)

Optionen der Kabeleinführung

 Kabeleinführung 	M20 x 1,5; ½ NPT
 Kabelverschraubung 	M20 x 1,5; ½ NPT
- Blindstopfen	M20 x 1,5; ½ NPT
- Verschlusskappe	½ NPT

Aderquerschnitt (Federkraftklemmen)

Massiver Draht, Litze
 Litze mit Aderendhülse
 0,2 ... 2,5 mm² (AWG 24 ... 14)
 0,2 ... 1,5 mm² (AWG 24 ... 16)

Elektromechanische Daten - Ausführung IP66/IP68 (1 bar)

Optionen der Kabeleinführung

- Kabelverschraubung mit integriertem M20 x 1,5 (Kabel: ø 5 ... 9 mm)

Anschlusskabel

Kabeleinführung
 ½ NPT

Blindstopfen
 M20 x 1,5; ½ NPT

Anschlusskabel

Aderquerschnitt 0,5 mm² (AWG 20)

- Aderwiderstand $< 0.036 \Omega/m$

- Zugfestigkeit < 1200 N (270 lbf)

- Standardlänge 5 m (16.4 ft)

- Max. Länge 180 m (590.6 ft)

Min. Biegeradius
 25 mm (0.984 in) bei 25 °C (77 °F)

- Durchmesser ca. 8 mm (0.315 in)

Farbe - Nicht-Ex-AusführungFarbe - Ex-AusführungBlau

Anzeige- und Bedienmodul

Spannungsversorgung und Datenüber- durch den Sensor

tragung

Anzeige LC-Display in Dot-Matrix

Bedienelemente 4 Tasten

Schutzart

loseEingebaut im Sensor ohne DeckelIP40

Umgebungstemperatur - Anzeige- und -20 ... +70 °C (-4 ... +158 °F)

Bedienmodul

Werkstoff

- Gehäuse ABS

Sichtfenster
 Polyesterfolie

Spannungsversorgung

Betriebsspannung U_B 12 ... 36 V DC

Betriebsspannung U_R mit eingeschalteter 20 ... 36 V DC

Beleuchtung

Verpolungsschutz Integriert

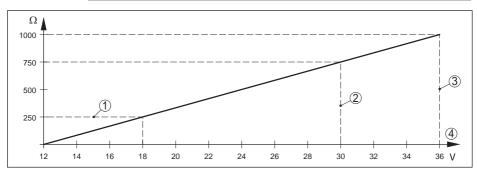


Abb. 31: Spannungsdiagramm

- HART-Bürde
- Spannungsgrenze Ex ia-Gerät 2
- Spannungsgrenze Nicht-Ex-/Ex d ia-Gerät
- Betriebsspannung

Zulässige Restwelligkeit

- < 100 Hz

 $U_{ss} < 1 \text{ V}$

- 100 Hz ... 10 kHz

 $U_{cc} < 10 \text{ mV}$

Bürde

siehe Diagramm

Potenzialverbindungen und elektrische Trennmaßnahmen im Gerät

Elektronik

Nicht potenzialgebunden

Galvanische Trennung

- zwischen Elektronik und metallischen Bemessungsspannung 500 V AC

Geräteteilen

Leitende Verbindung

Zwischen Erdungsklemme und metallischem Prozess-

anschluss

Elektrische Schutzmaßnahmen

Schutzart

Gehäusewerkstoff	Ausführung	IP-Schutzart	NEMA-Schutzart
Kunststoff	Einkammer	IP66/IP67	Type 4X
	Zweikammer	IP66/IP67	Type 4X
Aluminium	Einkammer	IP66/IP68 (0,2 bar)	Type 6P
		IP68 (1 bar)	Type 6P
	Zweikammer	IP66/IP67	Type 4X
		IP66/IP68 (0,2 bar)	Type 6P
		IP68 (1 bar)	Type 6P
Edelstahl (elektropoliert)	Einkammer	IP66/IP68 (0,2 bar)	Type 6P

Gehäusewerkstoff	Ausführung	IP-Schutzart	NEMA-Schutzart
Edelstahl (Feinguss)	Einkammer	IP66/IP68 (0,2 bar)	Type 6P
		IP68 (1 bar)	Type 6P
	Zweikammer	IP66/IP67	Type 4X
		IP66/IP68 (0,2 bar)	Type 6P
		IP68 (1 bar)	Type 6P

Anschluss des speisenden Netzteils Netze der Überspannungskategorie III

Einsatzhöhe über Meeresspiegel

standardmäßig bis 2000 m (6562 ft)mit vorgeschaltetem Überspannungs- bis 5000 m (16404 ft)

schutz

Verschmutzungsgrad⁶⁾ 4

Schutzklasse II (IEC 61010-1)

Funktionale Sicherheit (SIL)

Bei Geräten mit SIL-Qualifikation ist werkseitig die funktionale Sicherheit bereits aktiviert. Bei Geräten ohne SIL-Qualifikation muss werkseitig für Einsätze nach SIL die funktionale Sicherheit durch den Anwender über das Anzeige- und Bedienmodul bzw. über PACTware aktiviert werden.

Funktionale Sicherheit nach IEC 61508-4

Einkanalige Architektur (1001D)
 Zweikanalige diversitär redundante
 Architektur (1002D)

Detaillierte Informationen finden Sie im mitgelieferten Safety Manual der Geräteserie bzw. unter "www.vega.com", "Downloads", "Zulassungen".

Zulassungen

Geräte mit Zulassungen können je nach Ausführung abweichende technische Daten haben.

Bei diesen Geräten sind deshalb die zugehörigen Zulassungsdokumente zu beachten. Diese sind im Gerätelieferumfang enthalten oder können über Eingabe der Seriennummer Ihres Gerätes im Suchfeld auf www.vega.com sowie über den allgemeinen Downloadbereich heruntergeladen werden.

11.2 Maße

Die folgenden Maßzeichnungen stellen nur einen Ausschnitt der möglichen Ausführungen dar. Detaillierte Maßzeichnungen können auf www.vega.com/downloads und "Zeichnungen" heruntergeladen werden.

⁶⁾ Bei Einsatz mit erfüllter Gehäuseschutzart

Kunststoffgehäuse

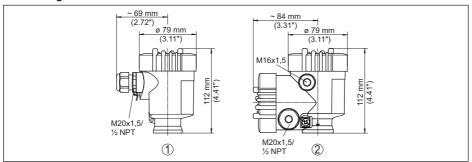


Abb. 32: Gehäuseausführungen in Schutzart IP66/IP67 (mit eingebautem Anzeige- und Bedienmodul vergrößert sich die Gehäusehöhe um 9 mm/0.35 in)

- 1 Kunststoff-Einkammer
- 2 Kunststoff-Zweikammer

Aluminiumgehäuse in Schutzart IP66/IP68 (1 bar)

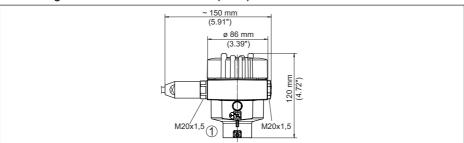


Abb. 33: Gehäuseausführungen in Schutzart IP66/IP68 (1 bar), (mit eingebautem Anzeige- und Bedienmodul vergrößert sich die Gehäusehöhe um 18 mm/0.71 in)

1 Aluminium-Einkammer

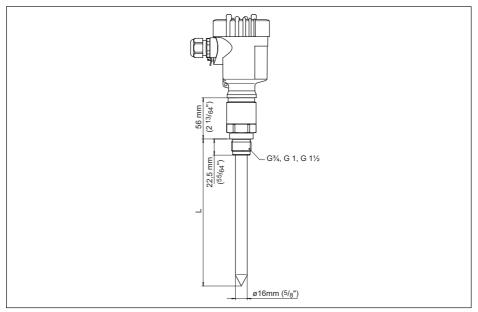


Abb. 34: VEGACAL 64, Gewindeausführung G1 (ISO 228 T1)

L Sensorlänge, siehe Kapitel "Technische Daten"

11.3 Gewerbliche Schutzrechte

VEGA product lines are global protected by industrial property rights. Further information see www.vega.com.

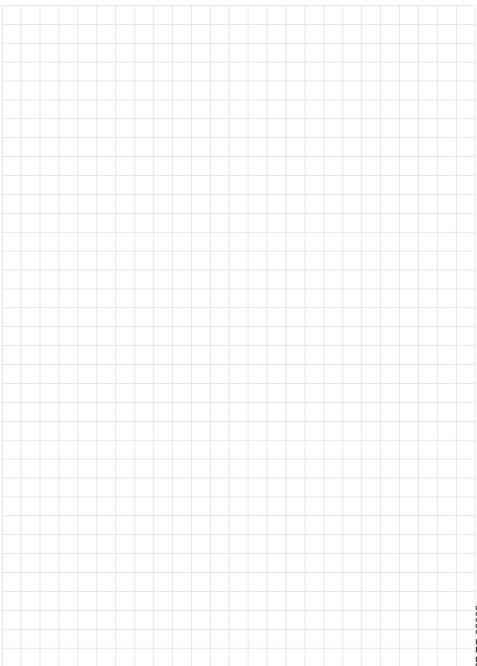
VEGA Produktfamilien sind weltweit geschützt durch gewerbliche Schutzrechte.

Nähere Informationen unter www.vega.com.

Les lignes de produits VEGA sont globalement protégées par des droits de propriété intellectuelle. Pour plus d'informations, on pourra se référer au site www.vega.com.

VEGA lineas de productos están protegidas por los derechos en el campo de la propiedad industrial. Para mayor información revise la pagina web www.vega.com.

Линии продукции фирмы ВЕГА защищаются по всему миру правами на интеллектуальную собственность. Дальнейшую информацию смотрите на сайте <u>www.vega.com</u>.


VEGA系列产品在全球享有知识产权保护。

进一步信息请参见网站<www.vega.com。

11.4 Warenzeichen

Alle verwendeten Marken sowie Handels- und Firmennamen sind Eigentum ihrer rechtmäßigen Eigentümer/Urheber.

Druckdatum:

Die Angaben über Lieferumfang, Anwendung, Einsatz und Betriebsbedingungen der Sensoren und Auswertsysteme entsprechen den zum Zeitpunkt der Drucklegung vorhandenen Kenntnissen.
Änderungen vorbehalten

© VEGA Grieshaber KG, Schiltach/Germany 2023

30030-DE-230426