Operating Instructions
Vibrating level switch for powders

VEGAWAVE 61
Relay (DPDT)
Contents

1 About this document .. 4
 1.1 Function ... 4
 1.2 Target group ... 4
 1.3 Symbols used .. 4

2 For your safety ... 5
 2.1 Authorised personnel .. 5
 2.2 Appropriate use .. 5
 2.3 Warning about incorrect use .. 5
 2.4 General safety instructions ... 6
 2.5 Safety label on the instrument .. 6
 2.6 EU conformity .. 6
 2.7 SIL conformity .. 6
 2.8 Installation and operation in the USA and Canada 6
 2.9 Safety instructions for Ex areas ... 6
 2.10 Environmental instructions .. 6

3 Product description ... 7
 3.1 Configuration ... 7
 3.2 Principle of operation ... 7
 3.3 Adjustment .. 8
 3.4 Storage and transport .. 8

4 Mounting .. 10
 4.1 General instructions ... 10
 4.2 Mounting instructions .. 11

5 Connecting to power supply .. 15
 5.1 Preparing the connection .. 15
 5.2 Connection procedure .. 16
 5.3 Wiring plan, single chamber housing .. 16

6 Setup ... 18
 6.1 General information ... 18
 6.2 Adjustment elements ... 18
 6.3 Function table .. 19

7 Maintenance and fault rectification .. 21
 7.1 Maintenance ... 21
 7.2 Rectify faults .. 21
 7.3 Exchanging the electronics module ... 22
 7.4 How to proceed if a repair is necessary ... 23

8 Dismount ... 25
 8.1 Dismounting steps .. 25
 8.2 Disposal .. 25

9 Supplement ... 26
 9.1 Technical data ... 26
 9.2 Dimensions ... 29
 9.3 Industrial property rights ... 31
 9.4 Trademark ... 31
Safety instructions for Ex areas

Take note of the Ex specific safety instructions for Ex applications. These instructions are attached as documents to each instrument with Ex approval and are part of the operating instructions.

Editing status: 2018-11-22
1 About this document

1.1 Function
This operating instructions provides all the information you need for mounting, connection and setup as well as important instructions for maintenance, fault rectification, the exchange of parts and the safety of the user. Please read this information before putting the instrument into operation and keep this manual accessible in the immediate vicinity of the device.

1.2 Target group
This operating instructions manual is directed to trained personnel. The contents of this manual must be made available to the qualified personnel and implemented.

1.3 Symbols used

Document ID
This symbol on the front page of this instruction refers to the Document ID. By entering the Document ID on www.vega.com you will reach the document download.

Information, tip, note
This symbol indicates helpful additional information.

Caution: If this warning is ignored, faults or malfunctions can result.

Warning: If this warning is ignored, injury to persons and/or serious damage to the instrument can result.

Danger: If this warning is ignored, serious injury to persons and/or destruction of the instrument can result.

Ex applications
This symbol indicates special instructions for Ex applications.

SIL applications
This symbol indicates instructions for functional safety which must be taken into account particularly for safety-relevant applications.

• List
The dot set in front indicates a list with no implied sequence.

→ Action
This arrow indicates a single action.

1 Sequence of actions
Numbers set in front indicate successive steps in a procedure.

Battery disposal
This symbol indicates special information about the disposal of batteries and accumulators.
2 For your safety

2.1 Authorised personnel
All operations described in this documentation must be carried out only by trained, qualified personnel authorised by the plant operator. During work on and with the device, the required personal protective equipment must always be worn.

2.2 Appropriate use
The VEGAWAVE 61 is a sensor for point level detection. You can find detailed information about the area of application in chapter "Product description".
Operational reliability is ensured only if the instrument is properly used according to the specifications in the operating instructions manual as well as possible supplementary instructions.
For safety and warranty reasons, any invasive work on the device beyond that described in the operating instructions manual may be carried out only by personnel authorised by the manufacturer. Arbitrary conversions or modifications are explicitly forbidden.

2.3 Warning about incorrect use
Inappropriate or incorrect use of the instrument can give rise to application-specific hazards, e.g. vessel overfill or damage to system components through incorrect mounting or adjustment. Thus damage to property, to persons or environmental contamination can be caused. Also the protective characteristics of the instrument can be influenced.

2.4 General safety instructions
This is a state-of-the-art instrument complying with all prevailing regulations and directives. The instrument must only be operated in a technically flawless and reliable condition. The operator is responsible for the trouble-free operation of the instrument. When measuring aggressive or corrosive media that can cause a dangerous situation if the instrument malfunctions, the operator has to implement suitable measures to make sure the instrument is functioning properly.
During the entire duration of use, the user is obliged to determine the compliance of the necessary occupational safety measures with the current valid rules and regulations and also take note of new regulations.
The safety instructions in this operating instructions manual, the national installation standards as well as the valid safety regulations and accident prevention rules must be observed by the user.
For safety and warranty reasons, any invasive work on the device beyond that described in the operating instructions manual may be carried out only by personnel authorised by the manufacturer. Arbitrary conversions or modifications are explicitly forbidden. For safety
reasons, only the accessory specified by the manufacturer must be used.

To avoid any danger, the safety approval markings and safety tips on the device must also be observed and their meaning read in this operating instructions manual.

2.5 Safety label on the instrument

The safety approval markings and safety tips on the device must be observed.

2.6 EU conformity

The device fulfils the legal requirements of the applicable EU directives. By affixing the CE marking, we confirm the conformity of the instrument with these directives.

You can find the EU conformity declaration on our website under www.vega.com/downloads.

2.7 SIL conformity

VEGAWAVE 61 meets the requirements to the functional safety according to IEC 61508. Further information is available in the Safety Manual "VEGAWAVE series 60".

2.8 Installation and operation in the USA and Canada

This information is only valid for USA and Canada. Hence the following text is only available in the English language.

Installations in the US shall comply with the relevant requirements of the National Electrical Code (ANSI/NFPA 70).

Installations in Canada shall comply with the relevant requirements of the Canadian Electrical Code.

2.9 Safety instructions for Ex areas

Please note the Ex-specific safety information for installation and operation in Ex areas. These safety instructions are part of the operating instructions manual and come with the Ex-approved instruments.

2.10 Environmental instructions

Protection of the environment is one of our most important duties. That is why we have introduced an environment management system with the goal of continuously improving company environmental protection. The environment management system is certified according to DIN EN ISO 14001.

Please help us fulfil this obligation by observing the environmental instructions in this manual:

- Chapter "Packaging, transport and storage"
- Chapter "Disposal"
3 Product description

3.1 Configuration

The scope of delivery encompasses:
- VEGAWAVE 61 point level switch
- Documentation
 - This operating instructions manual
 - Safety Manual "Functional safety (SIL)" (optional)
 - Supplementary instructions manual "Plug connector for level sensors" (optional)
 - Ex-specific "Safety instructions" (with Ex versions)
 - If necessary, further certificates

The VEGAWAVE 61 consists of the components:
- Housing lid
- Housing with electronics
- Process fitting with tuning fork

3.2 Principle of operation

VEGAWAVE 61 is a point level sensor with tuning fork for point level detection.
It is designed for industrial use in all areas of process technology and is preferably used for bulk solids.

Typical applications are overfill and dry run protection. Thanks to its simple and robust measuring system, VEGAWAVE 61 is virtually unaffected by the chemical and physical properties of the bulk solid. It also works when subjected to strong external vibrations or changing products.

Solid detection in water

If VEGAWAVE 61 was ordered for solids detection in water, the tuning fork is set to the density of water. In air or when immersed in water (density: 1 g/cm³/0.036 lbs/in), VEGAWAVE 61 signals "uncovered". Only when the vibrating element is also covered with solids (e.g. sand, sludge, gravel etc.) will the sensor signal "covered".

Function monitoring

The electronics module of VEGAWAVE 61 continuously monitors the following criteria:

- Correct vibrating frequency
- Line break to the piezo drive

If one of the stated malfunctions is detected or in case of voltage supply, the electronics takes on a defined switching status, i.e. the relay deenergises (safe state).

Functional principle

The tuning fork is piezoelectrically energised and vibrates at its mechanical resonance frequency of approx. 150 Hz. When the tuning fork is submerged in the product, the vibration amplitude changes. This change is detected by the integrated electronics module and converted into a switching command.

Voltage supply

VEGAWAVE 61 is a compact instrument, i.e. it can be operated without external evaluation system. The integrated electronics evaluates the level signal and outputs a switching signal. With this switching signal, a connected device can be operated directly (e.g. a warning system, a pump etc.).

The data for power supply are specified in chapter "Technical data".

3.3 Adjustment

On the electronics module you will find the following display and adjustment elements:

- Signal lamp for indication of the switching condition (green/red)
- Potentiometer for adaptation to the product density
- Mode switch for selecting the switching condition (min./max.)

3.4 Storage and transport

Your instrument was protected by packaging during transport. Its capacity to handle normal loads during transport is assured by a test based on ISO 4180.
The packaging of standard instruments consists of environment-friendly, recyclable carton material. The sensing element is additionally protected with a cardboard cover. For special versions, PE foam or PE foil is also used. Please dispose of the packaging material through specialised recycling companies.

Transport

Transport must be carried out in due consideration of the notes on the transport packaging. Nonobservance of these instructions can cause damage to the device.

Transport inspection

The delivery must be checked for completeness and possible transit damage immediately at receipt. Ascertained transit damage or concealed defects must be appropriately dealt with.

Storage

Up to the time of installation, the packages must be left closed and stored according to the orientation and storage markings on the outside.

Unless otherwise indicated, the packages must be stored only under the following conditions:
- Not in the open
- Dry and dust free
- Not exposed to corrosive media
- Protected against solar radiation
- Avoiding mechanical shock and vibration

Storage and transport temperature

- Storage and transport temperature see chapter "Supplement - Technical data - Ambient conditions"
- Relative humidity 20 … 85 %

Lifting and carrying

With instrument weights of more than 18 kg (39.68 lbs) suitable and approved equipment must be used for lifting and carrying.
4 Mounting

4.1 General instructions

Suitability for the process conditions

Make sure that all parts of the instrument coming in direct contact with the process, especially the sensor element, process seal and process fitting, are suitable for the existing process conditions, such as process pressure, process temperature as well as the chemical properties of the medium.

You can find the specifications in chapter "Technical data" and on the nameplate.

Suitability for the ambient conditions

The instrument is suitable for standard and extended ambient conditions acc. to DIN/EN/IEC/ANSI/ISA/UL/CSA 61010-1.

Switching point

In general, VEGAWAVE 61 can be installed in any position. The instrument only has to be mounted in such a way that the vibrating element is at the height of the desired switching point.

Moisture

Use the recommended cables (see chapter "Connecting to power supply") and tighten the cable gland.

You can give your instrument additional protection against moisture penetration by leading the connection cable downward in front of the cable gland. Rain and condensation water can thus drain off. This applies mainly to outdoor mounting as well as installation in areas where high humidity is expected (e.g. through cleaning processes) or on cooled or heated vessels.

To maintain the housing protection, make sure that the housing lid is closed during operation and locked, if necessary.

Make sure that the degree of contamination specified in chapter "Technical data" meets the existing ambient conditions.

Transport

Do not hold VEGAWAVE 61 on the vibrating element. Especially with flange and tube versions, the sensor can be damaged by the weight of the instrument.

Remove the protective cover just before mounting.
Pressure/Vacuum

The process fitting must be sealed if there is gauge or low pressure in the vessel. Before use, check if the seal material is resistant against the measured product and the process temperature.

The max. permissible pressure is specified in chapter "Technical data" or on the type label of the sensor.

Handling

The vibrating level switch is a measuring instrument and must be treated accordingly. Bending the vibrating element will destroy the instrument.

Warning:

The housing must not be used to screw the instrument in! Applying tightening force can damage internal parts of the housing.

Use the hexagon above the thread for screwing in.

Cable entries - NPT thread

Metric threads

In the case of instrument housings with metric thread, the cable glands are screwed in at the factory. They are sealed with plastic plugs as transport protection.

You have to remove these plugs before electrical connection.

NPT thread

In the case of instrument housings with self-sealing NPT threads, it is not possible to have the cable entries screwed in at the factory. The free openings for the cable glands are therefore covered with red dust protection caps as transport protection.

Prior to setup you have to replace these protective caps with approved cable glands or close the openings with suitable blind plugs.

4.2 Mounting instructions

Mounting socket

The vibrating element should protrude into the vessel to avoid buildup. For that reason, avoid using mounting bosses for flanges and screwed fittings. This applies particularly to use with adhesive products.

Filling opening

Mount the instrument in such a way that the tuning fork does not protrude directly into the filling stream.
Fig. 3: Horizontal installation
a. Protective sheet
b. Concave protective sheet for abrasive solids

If such an installation location should be necessary, mount a suitable protective sheet above or in front of the vibrating element, see illustration "a").

In abrasive solids, mounting according to illustration "b" has proven. A spout forms in the concave protective sheet preventing wear of the protective sheet.

Horizontal mounting

To achieve a very precise switching point, you can install VEGAWAVE 61 horizontally. However, if the switching point can have a tolerance of a few centimeters, we recommend mounting VEGAWAVE 61 approx. 20° inclined to the vessel bottom to avoid buildup.

Fig. 4: Horizontal mounting

Inflowing medium

If VEGAWAVE 61 is mounted in the filling stream, unwanted false measurement signals can be generated. For this reason, mount
VEGAWAVE 61 at a position in the vessel where no disturbances, e.g. from filling openings, agitators, etc., can occur.

Product flow

To make sure the tuning fork of VEGAWAVE 61 generates as little resistance as possible to product flow, mount the sensor so that the surfaces are parallel to the product movement.

Adhesive products

In case of horizontal mounting in adhesive products, the surfaces of the tuning fork should be vertical in order to reduce buildup on the tuning fork. On the screwed version you will find a marking on the hexagon. With this, you can check the position of the tuning fork when screwing it in. When the hexagon touches the seal, the thread can still be turned by approx. half a turn. This is sufficient to reach the recommended installation position.

In the case of flange versions, the fork is aligned with the flange holes.

Baffle protection against falling rocks

In applications such as grit chambers or settling basins for coarse sediments, the vibrating element must be protected against damage with a suitable baffle.

This baffle must be manufactured by you.
Fig. 7: Baffle for protection against mechanical damage
5 Connecting to power supply

5.1 Preparing the connection

Note safety instructions
Always keep in mind the following safety instructions:

Warning:
Connect only in the complete absence of line voltage.

- The electrical connection must only be carried out by trained, qualified personnel authorised by the plant operator.
- Always switch off power supply, before connecting or disconnecting the instrument.

Note:
Install a disconnecting device for the instrument which is easy to access. The disconnecting device must be marked for the instrument (IEC/EN 61010).

Take note of safety instructions for Ex applications
In hazardous areas you must take note of the respective regulations, conformity and type approval certificates of the sensors and power supply units.

Voltage supply
Connect the voltage supply according to the connection diagrams. The electronics module with relay output is designed in protection class I. To maintain this protection class, it is absolutely necessary that the earth conductor be connected to the inner earth conductor terminal. Keep the general installation regulations in mind. Take note of the corresponding installation regulations for hazardous areas with Ex applications.

The data for power supply are specified in chapter "Technical data".

Connection cable
The instrument is connected with standard three-wire cable without screen. If electromagnetic interference is expected which is above the test values of EN 61326 for industrial areas, screened cable should be used.

Make sure that the cable used has the required temperature resistance and fire safety for max. occurring ambient temperature.

Use cable with round cross-section. A cable outer diameter of 5 … 9 mm (0.2 … 0.35 in) ensures the seal effect of the cable gland.

If you are using cable with a different diameter or cross-section, exchange the seal or use a suitable cable gland.

In hazardous areas, use only approved cable connections for VEGA-WAVE 61.

Connection cable for Ex applications
Take note of the corresponding installation regulations for Ex applications.

Cover all housing openings conforming to standard according to EN 60079-1.
5.2 Connection procedure

With Ex instruments, the housing cover may only be opened if there is no explosive atmosphere present.

Proceed as follows:
1. Unscrew the housing lid
2. Loosen compression nut of the cable gland and remove blind plug
3. Remove approx. 10 cm (4 in) of the cable mantle, strip approx. 1 cm (0.4 in) of insulation from the ends of the individual wires
4. Insert the cable into the sensor through the cable entry
5. Lift the opening levers of the terminals with a screwdriver (see following illustration)

![Fig. 8: Connection steps 5 and 6](image)

6. Insert the wire ends into the open terminals according to the wiring plan
7. Press down the opening levers of the terminals, you will hear the terminal spring closing
8. Check the hold of the wires in the terminals by lightly pulling on them
9. Tighten the compression nut of the cable entry gland. The seal ring must completely encircle the cable
10. If necessary, carry out a fresh adjustment
11. Screw the housing lid back on

The electrical connection is finished.

5.3 Wiring plan, single chamber housing

The following illustrations apply to the non-Ex as well as to the Ex-d version.
Connecting to power supply

Housing overview

Fig. 9: Material versions, single chamber housing
1 Plastic (not with Ex d)
2 Aluminium
3 Stainless steel (not with Ex d)
4 Stainless steel, electropolished (not with Ex d)
5 Filter element for pressure compensation (not with Ex d)

Wiring plan

We recommend connecting VEGAWAVE 61 in such a way that the switching circuit is open when there is a level signal, line break or failure (safe state).

The relays are always shown in non-operative condition.

Fig. 10: Wiring plan
1 Relay output
2 Relay output
3 Voltage supply
6 Setup

6.1 General information
The figures in brackets refer to the following illustrations.

Function/Configuration

On the electronics module you will find the following display and adjustment elements:

- Potentiometer for adjustment of the density range (1)
- DIL switch for mode adjustment - min./max. (2)
- Signal lamp (5)

Note:
As a rule, always set the mode with mode switch (2) before starting the setup of VEGAWAVE 61. The switching output will change if you set the mode switch (2) afterwards. This could possibly trigger other connected instruments or devices.

6.2 Adjustment elements

With the potentiometer you can adapt the switching point to the solid. It is already preset and must only be modified in special cases.

By default, the potentiometer of VEGAWAVE 61 is set to the right stop (> 0.02 g/cm³ or 0.0008 lbs/in³). In case of very light-weight solids, turn the potentiometer to the left stop (> 0.008 g/cm³ or 0.0003 lbs/in³). VEGAWAVE 61 will thus be more sensitive and can detect light-weight solids more reliably.
For instruments detecting solids in water, these settings are not applicable. The density range is preset and must not be changed.

Mode adjustment (2)

With the mode setting (min./max.) you can change the switching condition of the relay. You can set the required mode according to the "Function table" (max. - max. detection or overflow protection, min. - min. detection or dry run protection).

We recommend connecting according to the idle current principle (relay contact deenergizes when the switching point is reached), because the relay always takes on the same (safe) state if a failure is detected.

Signal lamp (5)

Control lamp for indication of the switching status
- green = relay energized
- red = relay deenergized
- red (flashing) = failure

6.3 Function table

The following table provides an overview of the switching conditions depending on the set mode and the level.

<table>
<thead>
<tr>
<th>Level</th>
<th>Switching status</th>
<th>Control lamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode max. Overflow protection</td>
<td>Relay energized</td>
<td>Green</td>
</tr>
<tr>
<td>Mode max. Overflow protection</td>
<td>Relay deenergized</td>
<td>Red</td>
</tr>
<tr>
<td>Mode min. Dry run protection</td>
<td>Relay energized</td>
<td>Green</td>
</tr>
<tr>
<td>Mode min. Dry run protection</td>
<td>Relay deenergized</td>
<td>Red</td>
</tr>
<tr>
<td>Failure of the supply voltage (min./max. mode)</td>
<td>Relay deenergized</td>
<td>Orange</td>
</tr>
<tr>
<td>Level</td>
<td>Switching status</td>
<td>Control lamp</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Fault</td>
<td>any</td>
<td>Relay deenergized</td>
</tr>
</tbody>
</table>
7 Maintenance and fault rectification

7.1 Maintenance

If the device is used properly, no special maintenance is required in normal operation.

Cleaning

The cleaning helps that the type label and markings on the instrument are visible.

Take note of the following:

- Use only cleaning agents which do not corrode the housings, type label and seals
- Use only cleaning methods corresponding to the housing protection rating

7.2 Rectify faults

The operator of the system is responsible for taking suitable measures to rectify faults.

VEGAWAVE 61 offers maximum reliability. Nevertheless, faults can occur during operation. These may be caused by the following, e.g.:

- Sensor
- Process
- Voltage supply
- Signal processing

The first measure to take is to check the output signal. In many cases, the causes can be determined this way and the faults quickly rectified.

Should these measures not be successful, please call in urgent cases the VEGA service hotline under the phone no. +49 1805 858550.

The hotline is manned 7 days a week round-the-clock. Since we offer this service worldwide, the support is only available in the English language. The service is free, only standard call charges are incurred.
7 Maintenance and fault rectification

Checking the switching signal

<table>
<thead>
<tr>
<th>Error</th>
<th>Cause</th>
<th>Rectification</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEGAWAVE 61 signals "covered" without being submerged (overfill protection)</td>
<td>Operating voltage too low</td>
<td>Check operating voltage</td>
</tr>
<tr>
<td>VEGAWAVE 61 signals "uncovered" when being submerged (dry run protection)</td>
<td>Electronics defective</td>
<td>Press the mode switch. If the instrument then changes the mode, the vibrating element may be covered with buildup or mechanically damaged. Should the switching function in the correct mode still be faulty, return the instrument for repair.</td>
</tr>
<tr>
<td>Unfavourable installation location</td>
<td>Mount the instrument at a location in the vessel where no dead zones or mounds can form.</td>
<td></td>
</tr>
<tr>
<td>Buildup on the vibrating element</td>
<td>Check the vibrating element and the sensor for buildup and remove the buildup if there is any.</td>
<td></td>
</tr>
<tr>
<td>Wrong mode selected</td>
<td>Set the correct mode with the mode switch (overflow protection, dry run protection). Wiring should be carried out according to the closed-circuit principle.</td>
<td></td>
</tr>
<tr>
<td>Signal lamp flashes red</td>
<td>Error on the vibrating element</td>
<td>Check if the vibrating element is damaged or extremely corroded.</td>
</tr>
<tr>
<td></td>
<td>Interference on the electronics module</td>
<td>Exchanging the electronics module</td>
</tr>
<tr>
<td></td>
<td>instrument defective</td>
<td>Exchange the instrument or send it in for repair</td>
</tr>
</tbody>
</table>

Reaction after fault rectification

Depending on the reason for the fault and the measures taken, the steps described in chapter "Set up" may have to be carried out again.

7.3 Exchanging the electronics module

In general, all electronics modules of series WE60 can be interchanged. If you want to use an electronics module with a different signal output, you can download the corresponding operating instructions manual from our homepage under Downloads.

With Ex-d instruments, the housing cover may only be opened if there is no explosive atmosphere present.

Proceed as follows:

1. Switch off voltage supply
2. Unscrew the housing lid
3. Lift the opening levers of the terminals with a screwdriver
4. Pull the connection cables out of the terminals
5. Loosen the two screws with a screw driver (Torx size T10 or slot 4)
6. Pull out the old electronics module

7. Compare the new electronics module with the old one. The type label of the electronics module must correspond to that of the old electronics module. This applies particularly to instruments used in hazardous areas.

8. Compare the settings of the two electronics modules. Set the adjustment elements of the new electronics module to the same setting of the old one.

Information:
Make sure that the housing is not rotated during the electronics exchange. Otherwise the plug may be in a different position later.

9. Insert the electronics module carefully. Make sure that the plug is in the correct position.

10. Screw in and tighten the two holding screws with a screwdriver (Torx size T10 or Phillips 4)

11. Insert the wire ends into the open terminals according to the wiring plan

12. Press down the opening levers of the terminals, you will hear the terminal spring closing

13. Check the hold of the wires in the terminals by lightly pulling on them

14. Check cable gland on tightness. The seal ring must completely encircle the cable.

15. Screw the housing lid back on
The electronics exchange is now finished.

7.4 How to proceed if a repair is necessary
You can find an instrument return form as well as detailed information about the procedure in the download area of our homepage: www.vega.com.
By doing this you help us carry out the repair quickly and without having to call back for needed information.

If a repair is necessary, please proceed as follows:

• Print and fill out one form per instrument
• Clean the instrument and pack it damage-proof
• Attach the completed form and, if need be, also a safety data sheet outside on the packaging
• Please contact the agency serving you to get the address for the return shipment. You can find the agency on our home page www.vega.com.
8 Dismount

8.1 Dismounting steps

Warning:
Before dismounting, be aware of dangerous process conditions such as e.g. pressure in the vessel, high temperatures, corrosive or toxic products etc.

Take note of chapters "Mounting" and "Connecting to voltage supply" and carry out the listed steps in reverse order.

With Ex instruments, the housing cover may only be opened if there is no explosive atmosphere present.

8.2 Disposal

The instrument consists of materials which can be recycled by specialised recycling companies. We use recyclable materials and have designed the electronics to be easily separable.

WEEE directive
The instrument does not fall in the scope of the EU WEEE directive. Article 2 of this Directive exempts electrical and electronic equipment from this requirement if it is part of another instrument that does not fall in the scope of the Directive. These include stationary industrial plants.

Pass the instrument directly on to a specialised recycling company and do not use the municipal collecting points.

If you have no way to dispose of the old instrument properly, please contact us concerning return and disposal.
9 Supplement

9.1 Technical data

Note for approved instruments

The technical data in the respective safety instructions are valid for approved instruments (e.g. with Ex approval). These data can differ from the data listed herein - for example regarding the process conditions or the voltage supply.

General data

- **Material 316L** corresponds to 1.4404 or 1.4435

Materials, wetted parts

- Process fitting - thread: 316L
- Process fitting - flange: 316L
- Process seal: Klingersil C-4400
- Tuning fork: 316L
- Extension tube Ø 43 mm (1.7 in): 316L

Materials, non-wetted parts

- Plastic housing: Plastic PBT (Polyester)
- Aluminium die-cast housing: Aluminium die-casting AlSi10Mg, powder-coated (Basis: Polyester)
- Stainless steel housing (precision casting): 316L
- Stainless steel housing (electropolished): 316L
- Seal between housing and housing lid: Silicone
- Light guide in housing cover (plastic): PMMA (Makrolon)
- Ground terminal: 316L
- Cable gland: PA, stainless steel, brass
- Sealing, cable gland: NBR
- Blind plug, cable gland: PA

Process fittings

- Pipe thread, cylindrical (DIN 3852-A): G1½
- Pipe thread, conical (ASME B1.20.1): 1½ NPT

Instrument weight (depending on process fitting)

- 0.8 … 4 kg (0.18 … 8.82 lbs)

Max. lateral load

- 600 N (135 lbf)
Fig. 29: Max. lateral load alongside fork side (narrow fork side)

Torque for NPT cable glands and Conduit tubes
- Plastic housing max. 10 Nm (7.376 lbf ft)
- Aluminium/Stainless steel housing max. 50 Nm (36.88 lbf ft)

Output variable
- Output Relay output (DPDT), 2 floating spdts
- Switching voltage max. 253 V AC/DC
 With circuits > 150 V AC/DC, the relay contacts must be in the same circuit.
- Switching current max. 3 A AC (cos phi > 0.9), 1 A DC
- Breaking capacity
 - Min. 50 mW
 - Max. 750 VA AC, 40 W DC (at U < 40 V DC)
 If inductive loads or stronger currents are switched through, the gold plating on the relay contact surface will be permanently damaged. The contact is then no longer suitable for switching low-level signal circuits.
- Contact material (relay contacts) AgNi or AgSnO2 each with 3 µm gold plating
- Modes (switchable)
 - A Max. detection or overflow protection
 - B Min. detection or dry run protection
- Switching delay
 - When immersed 0.5 s
 - When laid bare 1 s

Ambient conditions
- Ambient temperature on the housing -40 … +80 °C (-40 … +176 °F)
- Storage and transport temperature -40 … +80 °C (-40 … +176 °F)

Process conditions
- Measured variable Limit level of solids
- Process pressure -1 … 25 bar/-100 … 2500 kPa (-14.5 … 363 psig)
VEGAWAVE 61 of 316L

-50 ... +150 °C (-58 ... +302 °F)

Process temperature (thread or flange temperature) with temperature adapter (option)

-50 ... +250 °C (-58 ... +482 °F)

Figure 30: Ambient temperature - Process temperature

1. Process temperature
2. Ambient temperature
3. Temperature range with temperature adapter

Product density

- Standard sensitivity > 0.02 g/cm³ (0.0007 lbs/in³)
- High sensitivity > 0.008 g/cm³ (0.0003 lbs/in³)

Granular size

max. 10 mm (0.4 in)

Electromechanical data

Cable entry/plug (dependent on the version)

- Single chamber housing
 - 1 x cable entry M20 x 1.5 (cable: ø 5 ... 9 mm),
 - 1 x blind plug M20 x 1.5; attached 1 x cable entry M20 x 1.5

or:

 - 1 x cable entry ½ NPT, 1 x blind plug ½ NPT, 1 x cable entry ½ NPT

or:

 - 1 x plug M12 x 1; 1 x blind plug M20 x 1.5

Spring-loaded terminals

for wire cross-section up to 1.5 mm² (AWG 16)

Adjustment elements

Mode switch

- Min.
 - Min. detection or dry run protection
- Max.
 - Max. detection or overflow protection

Voltage supply

Operating voltage

20 ... 253 V AC, 50/60 Hz, 20 ... 72 V DC (at
U > 60 V DC, the ambient temperature can be max.
50 °C/122 °F)

Max. power consumption

8 VA (AC), 1.5 W (DC)
Electrical protective measures

<table>
<thead>
<tr>
<th>Protection rating</th>
<th>IP 66/IP 67 (NEMA Type 4X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude above sea level</td>
<td>up to 5000 m (16404 ft)</td>
</tr>
</tbody>
</table>

Overvoltage category

- up to 2000 m (6562 ft) III
- up to 5000 m (16404 ft) II

Protection class

I

Approvals

Instruments with approvals can have different technical specifications depending on the version. For that reason the associated approval documents of these instruments have to be carefully noted. They are part of the delivery or can be downloaded under www.vega.com, "Instrument search (serial number)" as well as in the general download area.

9.2 Dimensions

VEGA WAVE 61, housing

![Fig. 31: Housing versions](image)

1. Plastic single chamber
2. Stainless steel single chamber (electropolished)
3. Stainless steel single chamber (precision casting)
4. Aluminium - single chamber
Fig. 32: VEGAWAVE 61, threaded version G1½ (DIN ISO 228/1)

Fig. 33: Temperature adapter
9.3 **Industrial property rights**

VEGA product lines are global protected by industrial property rights. Further information see www.vega.com.

Les lignes de produits VEGA sont globalement protégées par des droits de propriété intellectuelle. Pour plus d’informations, on pourra se référer au site www.vega.com.

VEGA系列产品在全球享有知识产权保护。
进一步信息请参见网站<www.vega.com>。

9.4 **Trademark**

All the brands as well as trade and company names used are property of their lawful proprietor/originator.