Betriebsanleitung

Hängedruckmessumformer mit keramischer Messzelle

VEGAWELL 52

4 ... 20 mA

Document ID: 35401

Inhaltsverzeichnis

1	Zu diesem Dokument	4
	1.1 Funktion	4
	1.2 Zielgruppe	4
	1.3 Verwendete Symbolik	4
2	Zu Ihrer Sicherheit	
_	2.1 Autorisiertes Personal	
	2.2 Bestimmungsgemäße Verwendung	
	2.3 Warnung vor Fehlgebrauch	
	2.4 Allgemeine Sicherheitshinweise	
	2.5 Sicherheitskennzeichen am Gerät	
	2.6 Konformität.	
	2.7 NAMUR-Empfehlungen	
	2.8 Umwelthinweise	
3	Produktbeschreibung	
	3.1 Aufbau	
	3.2 Arbeitsweise	
	3.3 Bedienung	
	3.4 Verpackung, Transport und Lagerung	
	3.5 Zubehör	. 10
4	Montieren	. 11
	4.1 Allgemeine Hinweise	. 11
	4.2 Montageschritte mit Abspannklemme	
	4.3 Montageschritte mit Tragkabelverschraubung	
	4.4 Montageschritte mit Gewindestutzen oder Gehäuse	
_	An die Spannungsversorgung anschließen	4.5
5	5.1 Anschluss vorbereiten	
	5.2 Anschlussschritte	
	5.3 Anschlussplan	
6	Instandhalten und Störungen beseitigen	
	6.1 Instandhalten	. 20
	6.2 Störungen beseitigen	
	6.3 Tragkabel kürzen	. 21
	6.4 Tragkabel kürzen - Ausführung mit Gehäuse	
	6.5 Vorgehen im Reparaturfall	. 23
7	Ausbauen	24
•	7.1 Ausbauschritte	
	7.2 Entsorgen	
8	Anhang	
	8.1 Technische Daten	
	8.2 Maße	
	8.3 Gewerbliche Schutzrechte	. 35

5401-DE-230227

Sicherheitshinweise für Ex-Bereiche

Beachten Sie bei Ex-Anwendungen die Ex-spezifischen Sicherheitshinweise. Diese liegen jedem Gerät mit Ex-Zulassung als Dokument bei und sind Bestandteil der Betriebsanleitung.

Redaktionsstand: 2022-10-21

1 Zu diesem Dokument

1.1 Funktion

Die vorliegende Betriebsanleitung liefert Ihnen die erforderlichen Informationen für Montage, Anschluss und Inbetriebnahme sowie wichtige Hinweise für Wartung, Störungsbeseitigung, den Austausch von Teilen und die Sicherheit des Anwenders. Lesen Sie diese deshalb vor der Inbetriebnahme und bewahren Sie sie als Produktbestandteil in unmittelbarer Nähe des Gerätes jederzeit zugänglich auf.

1.2 Zielgruppe

Diese Betriebsanleitung richtet sich an ausgebildetes Fachpersonal. Der Inhalt dieser Anleitung muss dem Fachpersonal zugänglich gemacht und umgesetzt werden.

1.3 Verwendete Symbolik

Document ID

Dieses Symbol auf der Titelseite dieser Anleitung weist auf die Document ID hin. Durch Eingabe der Document ID auf www.vega.com kommen Sie zum Dokumenten-Download.

Information, Tipp, Hinweis

Dieses Symbol kennzeichnet hilfreiche Zusatzinformationen.

Vorsicht: Bei Nichtbeachten dieses Warnhinweises können Störungen oder Fehlfunktionen die Folge sein.

Warnung: Bei Nichtbeachten dieses Warnhinweises kann ein Personenschaden und/oder ein schwerer Geräteschaden die Folge sein.

Gefahr: Bei Nichtbeachten dieses Warnhinweises kann eine ernsthafte Verletzung von Personen und/oder eine Zerstörung des Gerätes die Folge sein.

Ex-Anwendungen

Dieses Symbol kennzeichnet besondere Hinweise für Ex-Anwendungen.

SIL-Anwendungen

Dieses Symbol kennzeichnet Hinweise zur Funktionalen Sicherheit, die bei sicherheitsrelevanten Anwendungen besonders zu beachten sind.

Liste

Der vorangestellte Punkt kennzeichnet eine Liste ohne zwingende Reihenfolge.

→ Handlungsschritt

Dieser Pfeil kennzeichnet einen einzelnen Handlungsschritt.

1 Handlungsfolge

Vorangestellte Zahlen kennzeichnen aufeinander folgende Handlungsschritte.

Entsorgung

Dieses Symbol kennzeichnet besondere Hinweise zur Entsorgung.

2 Zu Ihrer Sicherheit

2.1 Autorisiertes Personal

Sämtliche in dieser Dokumentation beschriebenen Handhabungen dürfen nur durch ausgebildetes und vom Anlagenbetreiber autorisiertes Fachpersonal durchgeführt werden.

Bei Arbeiten am und mit dem Gerät ist immer die erforderliche persönliche Schutzausrüstung zu tragen.

2.2 Bestimmungsgemäße Verwendung

Der Typ VEGAWELL 52 ist ein Druckmessumformer zur Füllstandund Pegelmessung.

Detaillierte Angaben zum Anwendungsbereich finden Sie in Kapitel "*Produktbeschreibung*".

Die Betriebssicherheit des Gerätes ist nur bei bestimmungsgemäßer Verwendung entsprechend den Angaben in der Betriebsanleitung sowie in den evtl. ergänzenden Anleitungen gegeben.

Eingriffe über die in der Betriebsanleitung beschriebenen Handhabungen hinaus dürfen aus Sicherheits- und Gewährleistungsgründen nur durch vom Hersteller autorisiertes Personal vorgenommen werden. Eigenmächtige Umbauten oder Veränderungen sind ausdrücklich untersagt.

2.3 Warnung vor Fehlgebrauch

Bei nicht sachgerechter oder nicht bestimmungsgemäßer Verwendung können von diesem Produkt anwendungsspezifische Gefahren ausgehen, so z. B. ein Überlauf des Behälters durch falsche Montage oder Einstellung. Dies kann Sach-, Personen- oder Umweltschäden zur Folge haben. Weiterhin können dadurch die Schutzeigenschaften des Gerätes beeinträchtigt werden.

2.4 Allgemeine Sicherheitshinweise

Das Gerät entspricht dem Stand der Technik unter Beachtung der üblichen Vorschriften und Richtlinien. Es darf nur in technisch einwandfreiem und betriebssicherem Zustand betrieben werden. Der Betreiber ist für den störungsfreien Betrieb des Gerätes verantwortlich. Beim Einsatz in aggressiven oder korrosiven Medien, bei denen eine Fehlfunktion des Gerätes zu einer Gefährdung führen kann, hat sich der Betreiber durch geeignete Maßnahmen von der korrekten Funktion des Gerätes zu überzeugen.

Durch den Anwender sind die Sicherheitshinweise in dieser Betriebsanleitung, die landesspezifischen Installationsstandards sowie die geltenden Sicherheitsbestimmungen und Unfallverhütungsvorschriften zu beachten.

Eingriffe über die in der Betriebsanleitung beschriebenen Handhabungen hinaus dürfen aus Sicherheits- und Gewährleistungsgründen nur durch vom Hersteller autorisiertes Personal vorgenommen werden. Eigenmächtige Umbauten oder Veränderungen sind ausdrück-

lich untersagt. Aus Sicherheitsgründen darf nur das vom Hersteller benannte Zubehör verwendet werden.

Um Gefährdungen zu vermeiden, sind die auf dem Gerät angebrachten Sicherheitskennzeichen und -hinweise zu beachten.

2.5 Sicherheitskennzeichen am Gerät

Die auf dem Gerät angebrachten Sicherheitskennzeichen und -hinweise sind zu beachten.

2.6 Konformität

Das Gerät erfüllt die gesetzlichen Anforderungen der zutreffenden landesspezifischen Richtlinien bzw. technischen Regelwerke. Mit der entsprechenden Kennzeichnung bestätigen wir die Konformität.

Die zugehörigen Konformitätserklärungen finden Sie auf unserer Homepage.

2.7 NAMUR-Empfehlungen

Die NAMUR ist die Interessengemeinschaft Automatisierungstechnik in der Prozessindustrie in Deutschland. Schwerpunkte der Tätigkeit sind Normungen sowie die Anforderungen an neue Geräte, Systeme und Technologien. Die herausgegebenen NAMUR-Empfehlungen (NE) gelten als Standards in der Feldinstrumentierung.

Das Gerät erfüllt die Anforderungen folgender NAMUR-Empfehlungen:

- NE 21 Elektromagnetische Verträglichkeit von Betriebsmitteln
- NE 43 Signalpegel f
 ür die Ausfallinformation von Messumformern

2.8 Umwelthinweise

Der Schutz der natürlichen Lebensgrundlagen ist eine der vordringlichsten Aufgaben. Deshalb haben wir ein Umweltmanagementsystem eingeführt mit dem Ziel, den betrieblichen Umweltschutz kontinuierlich zu verbessern. Das Umweltmanagementsystem ist nach DIN EN ISO 14001 zertifiziert.

Helfen Sie uns, diesen Anforderungen zu entsprechen und beachten Sie die Umwelthinweise in dieser Betriebsanleitung:

- Kapitel "Verpackung, Transport und Lagerung"
- Kapitel "Entsorgen"

3 Produktbeschreibung

3.1 Aufbau

Lieferumfang

Der Lieferumfang besteht aus:

- Druckmessumformer VEGAWELL 52 mit Tragkabel
- Dokumentation
 - Dieser Betriebsanleitung
 - Prüfzertifikat
 - Zusatzanleitung "Trinkwassereignung" (optional)
 - Ex-spezifischen "Sicherheitshinweisen" (bei Ex-Ausführungen)
 - Ggf. weiteren Bescheinigungen

Hinweis:

In dieser Betriebsanleitung werden auch optionale Gerätemerkmale beschrieben. Der jeweilige Lieferumfang ergibt sich aus der Bestellspezifikation.

Komponenten

Der VEGAWELL 52 mit Tragkabel besteht aus den Komponenten:

- Messwertaufnehmer
- Tragkabel
- Optional verstellbare Tragkabelverschraubung oder Gehäuse mit Gewinde

Die Komponenten stehen in unterschiedlichen Ausführungen zur Verfügung.

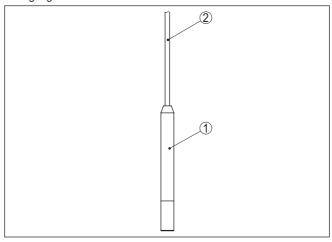


Abb. 1: Beispiel eines VEGAWELL 52 mit Messwertaufnehmer 22 mm

- 1 Messwertaufnehmer
- 2 Tragkabel

Typschild

Das Typschild enthält die wichtigsten Daten zur Identifikation und zum Einsatz des Gerätes:

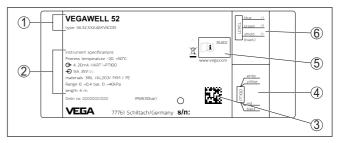


Abb. 2: Aufbau des Typschildes (Beispiel)

- 1 Gerätetyp, Produktcode
- 2 Technische Daten
- 3 QR-Code für Gerätedokumentation
- 4 Aderbelegung Tragkabel Temperatur (verfügbar je nach Ausführung)
- 5 ID-Nummern Gerätedokumentation
- 6 Aderbelegung Tragkabel Füllstand

Seriennummer - Gerätesuche

Das Typschild enthält die Seriennummer des Gerätes. Damit finden Sie über unsere Homepage folgende Daten zum Gerät:

- Produktcode (HTML)
- Lieferdatum (HTML)
- Auftragsspezifische Gerätemerkmale (HTML)
- Betriebsanleitung zum Zeitpunkt der Auslieferung (PDF)
- Prüfzertifikat (PDF) optional

Gehen Sie auf "www.vega.com" und geben Sie im Suchfeld die Seriennummer Ihres Gerätes ein.

Alternativ finden Sie die Daten über Ihr Smartphone:

- VEGA Tools-App aus dem "Apple App Store" oder dem "Google Play Store" herunterladen
- DataMatrix-Code auf dem Typschild des Gerätes scannen oder
- Seriennummer manuell in die App eingeben

3.2 Arbeitsweise

Anwendungsbereich

Der VEGAWELL 52 eignet sich zur kontinuierlichen Füllstandmessung von Flüssigkeiten. Typische Anwendungsgebiete sind Messungen in Wasser/Abwasser, Tiefbrunnen und im Schiffbau.

Funktionsprinzip

Sensorelement ist die CERTEC®-Messzelle mit robuster Keramikmembran. Der hydrostatische Druck bewirkt über die Keramikmembran eine Kapazitätsänderung in der Messzelle. Diese wird in ein entsprechendes Ausgangssignal umgewandelt.

Dichtungskonzept

Die CERTEC®-Messzelle ist standardmäßig mit einer seitlichen, zurückliegenden Dichtung ausgestattet.

Geräte mit Doppeldichtung verfügen über eine zusätzliche, vornliegende Dichtung.

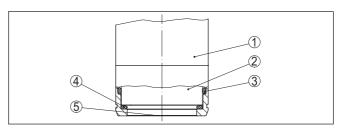


Abb. 3: Frontbündiger Einbau der CERTEC®-Messzelle mit Doppeldichtung

- 1 Gehäuse Messwertaufnehmer
- 2 Messzelle
- 3 Seitliche Dichtung für Messzelle
- 4 Zusätzliche, vorn liegende Dichtung für Messzelle
- 5 Membran

Spannungsversorgung

4 ... 20 mA-Zweileiterelektronik für Spannungsversorgung und Messwertübertragung auf derselben Leitung.

Die Daten für die Spannungsversorgung finden Sie in Kapitel "Technische Daten".

3.3 Bedienung

Der VEGAWELL 52 mit $4\dots 20$ mA-Elektronik bietet keine Bedienmöglichkeit.

3.4 Verpackung, Transport und Lagerung

Verpackung

Ihr Gerät wurde auf dem Weg zum Einsatzort durch eine Verpackung geschützt. Dabei sind die üblichen Transportbeanspruchungen durch eine Prüfung in Anlehnung an ISO 4180 abgesichert.

Bei Standardgeräten besteht die Verpackung aus Karton, ist umweltverträglich und wieder verwertbar. Bei Sonderausführungen wird zusätzlich PE-Schaum oder PE-Folie verwendet. Entsorgen Sie das anfallende Verpackungsmaterial über spezialisierte Recyclingbetriehe.

Transport

Der Transport muss unter Berücksichtigung der Hinweise auf der Transportverpackung erfolgen. Nichtbeachtung kann Schäden am Gerät zur Folge haben.

Transportinspektion

Die Lieferung ist bei Erhalt unverzüglich auf Vollständigkeit und eventuelle Transportschäden zu untersuchen. Festgestellte Transportschäden oder verdeckte Mängel sind entsprechend zu behandeln.

Lagerung

Die Packstücke sind bis zur Montage verschlossen und unter Beachtung der außen angebrachten Aufstell- und Lagermarkierungen aufzubewahren

Packstücke, sofern nicht anders angegeben, nur unter folgenden Bedingungen lagern:

- Nicht im Freien aufbewahren
- Trocken und staubfrei lagern

- Keinen aggressiven Medien aussetzen
- Vor Sonneneinstrahlung schützen
- Mechanische Erschütterungen vermeiden

Lager- und Transporttemperatur

- Lager- und Transporttemperatur siehe Kapitel "Anhang Technische Daten Umgebungsbedingungen"
- Relative Luftfeuchte 20 ... 85 %

Heben und Tragen

Bei Gerätegewichten über 18 kg (39.68 lbs) sind zum Heben und Tragen dafür geeignete und zugelassene Vorrichtungen einzusetzen.

3.5 Zubehör

VEGABOX 03

Die VEGABOX 03 ist ein Druckausgleichsgehäuse für den VEGA-WELL 52. Das Gehäuse enthält ein Filterelement zur Belüftung.

VEGADIS 82

Das VEGADIS 82 ist geeignet zur Messwertanzeige von 4 ... 20 mA und 4 ... 20 mA/HART-Sensoren. Es wird in die Signalleitung eingeschleift.

Messgerätehalter

Der Messgerätehalter dient zur Wand-/Rohrmontage von Druckmessumformern der VEGABAR Serie 80 und Hängedruckmessumformern VEGAWELL 52. Mitgelieferte Reduzierstücke ermöglichen die Anpassung an unterschiedliche Gerätedurchmesser. Der verwendete Werkstoff ist 316L.

Montagewinkel

Der robuste und hochbelastbare Winkel aus Edelstahl 1.4301/304 ist ausgelegt zur Wandmontage von VEGA-Geräten. Das erforderliche Befestigungsmaterial wird mitgeliefert.

4 Montieren

4.1 Allgemeine Hinweise

Prozessbedingungen

Das Gerät darf aus Sicherheitsgründen nur innerhalb der zulässigen Prozessbedingungen betrieben werden. Die Angaben dazu finden Sie in Kapitel "*Technische Daten*" der Betriebsanleitung bzw. auf dem Typschild.

Stellen Sie deshalb vor Montage sicher, dass sämtliche im Prozess befindlichen Teile des Gerätes für die auftretenden Prozessbedingungen geeignet sind.

Dazu zählen insbesondere:

- Messaktiver Teil
- Prozessanschluss
- Prozessdichtung

Prozessbedingungen sind insbesondere:

- Prozessdruck
- Prozesstemperatur
- Chemische Eigenschaften der Medien
- Abrasion und mechanische Einwirkungen

Eignung für die Umgebungsbedingungen

Das Gerät ist für normale und erweiterte Umgebungsbedingungen nach DIN/EN/IEC/ANSI/ISA/UL/CSA 61010-1 geeignet. Es kann sowohl im Innen- als auch im Außenbereich eingesetzt werden.

Transport- und Montageschutz

Der VEGAWELL 52 wird je nach Messwertaufnehmer mit einer Schutzkappe oder einem Transport- und Montageschutz geliefert.

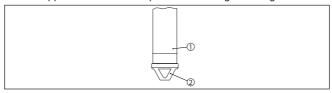


Abb. 4: VEGAWELL 52, Transport- und Montageschutz

- 1 Messwertaufnehmer
- 2 Transport- und Montageschutz

Entfernen Sie diese nach Montage und vor Inbetriebnahme des Gerätes.

Bei gering verschmutzten Messmedien kann der Transport- und Montageschutz als Aufprallschutz im Betrieb am Gerät bleiben.

Montageposition

Seitliche Bewegungen des Messwertaufnehmers können zu Messfehlern führen. Montieren Sie deshalb das Gerät in einer beruhigten Zone oder in einem passenden Schutzrohr.

Druckausgleich

Das Tragkabel enthält eine Kapillare für den atmosphärischen Druckausgleich. Führen Sie deshalb das Kabelende in einen trockenen

Raum oder in ein geeignetes Klemmgehäuse, z. B. VEGABOX 03 oder VEGADIS 82.

Montagebeispiel

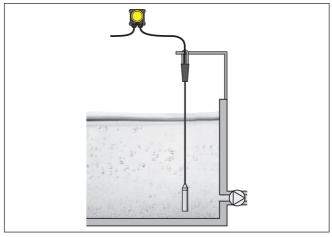


Abb. 5: Montagebeispiel: VEGAWELL 52 in einem offenen Becken mit Druckausgleichsgehäuse VEGABOX 03

4.2 Montageschritte mit Abspannklemme

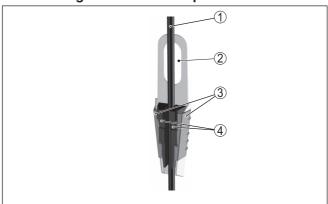


Abb. 6: Abspannklemme

- 1 Tragkabel
- 2 Einhängeöffnung
- 3 Klemmwangen

Montieren Sie den VEGAWELL 52 mit Abspannklemme wie folgt:

- 1. Abspannklemme in geeigneten Wandhaken einhängen
- 2. VEGAWELL 52 auf die gewünschte Messhöhe absenken
- Klemmwangen nach oben schieben und Tragkabel zwischen die Klemmwangen drücken

4. Tragkabel festhalten, Klemmwangen nach unten schieben und mit einem leichten Schlag fixieren

Der Ausbau erfolgt sinngemäß umgekehrt.

4.3 Montageschritte mit Tragkabelverschraubung

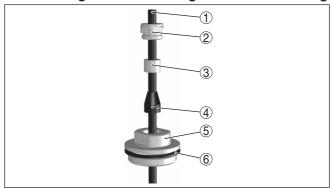


Abb. 7: Aufbau Tragkabelverschraubung

- 1 Tragkabel
- 2 Dichtschraube
- 3 Konushülse
- 4 Dichtkonus
- 5 Tragkabelverschraubung
- 6 Dichtung

Montieren Sie den VEGAWELL 52 mit Tragkabelverschraubung wie folgt:

- 1. Einschweißstutzen in die Behälterdecke einschweißen
- VEGAWELL 52 durch den behälterseitigen Einschweißstutzen G1½ bzw. 1½ NPT auf die gewünschte Höhe absenken
- 3. Tragkabel von unten durch die geöffnete Verschraubung schieben
- Dichtkonus und Konushülse über das Tragkabel schieben, mit der Dichtschraube von Hand fixieren
- Verschraubung in den Stutzen drehen, mit SW 30 festdrehen, danach Dichtschraube mit SW 19 festdrehen

So korrigieren Sie die Höhe:

- Dichtschraube mit SW 19 lösen
- Dichtkonus und Konushülse in die gewünschte Position auf dem Kabel schieben
- 3. Dichtschraube wieder festschrauben

Der Ausbau erfolgt sinngemäß umgekehrt.

4.4 Montageschritte mit Gewindestutzen oder Gehäuse

Abb. 8: Kunststoffgehäuse

- 1 Gehäuse
- 2 Dichtung
- 3 Einschraubgewinde

Im Behälter montieren

Montieren Sie den VEGAWELL 52 wie folgt:

- Einschweißstutzen G1½ bzw. 1½ NPT in die Behälterdecke einschweißen
- 2. Messwertaufnehmer durch den Einschweißstutzen schieben
- Gewinde mit Dichtung in den Stutzen drehen und mit SW 46 festziehen¹⁾

Der Ausbau erfolgt sinngemäß umgekehrt.

Im Becken montieren

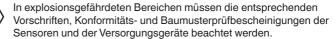
Montieren Sie den VEGAWELL 52 wie folgt:

- Montagewinkel in passender Höhe an der Beckenwand befestigen
- Messwertaufnehmer durch die Öffnung des Montagewinkels und die Gegenmutter führen
- 3. Gegenmutter mit SW 46 auf dem Gewinde festdrehen

³⁵⁴⁰¹⁻DE-230227

5 An die Spannungsversorgung anschließen

Sicherheitshinweise


5.1 Anschluss vorbereiten

Schließen Sie das Gerät grundsätzlich nur in spannungslosem Zustand an.

Das Gerät ist mit einem integrierten Überspannungsschutz ausgestattet. Für eine erweiterte Absicherung des Signalkreises empfehlen wir zusätzliche externe Überspannungsschutzgeräte.

- Typ B63-48 (Einsatz beim VEGAWELL 52 mit Kunststoffgehäuse) oder
- Typ ÜSB 62-36G.X (Einsatz in einem separaten Gehäuse)

Sicherheitshinweise für Ex-Anwendungen beachten

Spannungsversorgung auswählen

Die Spannungsversorgung und das Stromsignal erfolgen über dasselbe zweiadrige Anschlusskabel. Der Spannungsversorgungsbereich kann sich je nach Geräteausführung unterscheiden.

Die Daten für die Spannungsversorgung finden Sie in Kapitel "Technische Daten".

Hinweis:

Versorgen Sie das Gerät über einen energiebegrenzten Stromkreis (Leistung max. 100 W) nach IEC 61010-1, z. B.:

- Class 2-Netzteil (nach UL1310)
- SELV-Netzteil (Sicherheitskleinspannung) mit passender interner oder externer Begrenzung des Ausgangsstromes

Berücksichtigen Sie folgende zusätzliche Einflüsse für die Betriebsspannung:

- Geringere Ausgangsspannung des Speisegerätes unter Nennlast (z. B. bei einem Sensorstrom von 20,5 mA oder 22 mA bei Störmeldung)
- Einfluss weiterer Geräte im Stromkreis (siehe Bürdenwerte in Kapitel "Technische Daten")

Installationskabel auswählen

Das Gerät wird mit handelsüblichem zweiadrigem Installationskabel ohne Abschirmung angeschlossen. Falls elektromagnetische Einstreuungen zu erwarten sind, die über den Prüfwerten der EN 61326 für industrielle Bereiche liegen, sollte abgeschirmtes Kabel verwendet werden.

Stellen Sie sicher, dass das verwendete Kabel die für die maximal auftretende Umgebungstemperatur erforderliche Temperaturbeständigkeit und Brandsicherheit aufweist.

Verwenden Sie Kabel mit rundem Querschnitt. Ein Kabelaußendurchmesser von 5 ... 9 mm (0.2 ... 0.35 in) stellt die Dichtwirkung der Kabelverschraubung sicher. Wenn Sie Kabel mit anderem Durchmesser oder Querschnitt einsetzen, wechseln Sie die Dichtung oder verwenden Sie eine geeignete Kabelverschraubung.

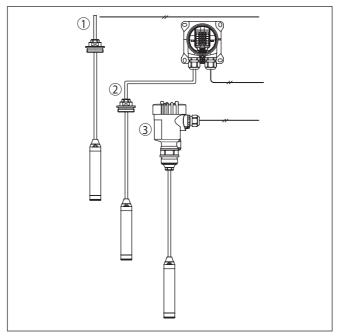


Abb. 9: Anschluss des VEGAWELL 52 an die Spannungsversorgung

- 1 Direkter Anschluss
- 2 Anschluss über VEGABOX 03
- 3 Anschluss über Gehäuse

Kabelschirmung und Erdung

Wenn abgeschirmtes Kabel erforderlich ist, empfehlen wir, die Kabelschirmung beidseitig auf Erdpotenzial zu legen. Im Anschlussgehäuse des Sensors bzw. in der VEGABOX muss die Abschirmung direkt an die innere Erdungsklemme angeschlossen werden. Die äußere Erdungsklemme am Gehäuse muss niederimpedant mit dem Erdpotenzial verbunden sein.

Bei Ex-Anlagen erfolgt die Erdung gemäß den Errichtungsvorschriften

Bei Galvanikanlagen sowie bei Anlagen für kathodischen Korrosionsschutz ist zu berücksichtigen, dass erhebliche Potenzialunterschiede bestehen. Dies kann bei beidseitiger Schirmerdung zu unzulässig hohen Schirmströmen führen.

•

Information:

Die metallischen Teile des Gerätes (Prozessanschluss, Messwertaufnehmer, Hüllrohr etc.) sind leitend mit der inneren und äußeren Erdungsklemme am Gehäuse verbunden. Diese Verbindung besteht entweder direkt metallisch oder bei Geräten mit externer Elektronik über die Abschirmung der speziellen Verbindungsleitung.

Angaben zu den Potenzialverbindungen innerhalb des Gerätes finden Sie in Kapitel "Technische Daten".

5.2 Anschlussschritte

Direkter Anschluss

Gehen Sie wie folgt vor:

- 1. Tragkabel bis in den Anschlussraum verlegen²⁾
- 2. Aderenden nach Anschlussplan an Klemmen anschließen

Anschluss über VEGA-BOX

Schließen Sie den VEGAWELL 52 gemäß Beschreibung in der Betriebsanleitung zur jeweiligen VEGABOX an.

5.3 Anschlussplan

Direkter Anschluss

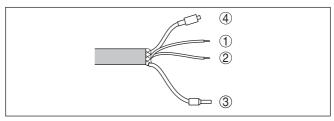


Abb. 10: Aderbelegung Tragkabel

- 1 Braun (+): zur Spannungsversorgung bzw. zum Auswertsystem
- 2 Blau (-): zur Spannungsversorgung bzw. zum Auswertsystem
- 3 Abschirmung
- 4 Druckausgleichskapillare mit Filterelement

Anschluss über VEGA-BOX 03

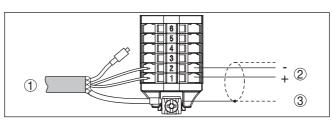


Abb. 11: Anschlussplan VEGAWELL 52 4 ... 20 mA, 4 ... 20 mA/HART

- 1 Zum Sensor
- 2 Zur Spannungsversorgung bzw. zum Auswertsystem
- 3 Abschirmung3)

Adernummer	Adernfarbe/Polarität	Klemme
1	Braun (+)	1
2	Blau (-)	2
	Abschirmung	Erdung

²⁾ Tragkabel ist werkseitig konfektioniert. Nach evtl. Kürzen des Tragkabels, das Typschild mit Träger wieder am Kabel befestigen.

³⁾ Abschirmung an die Erdungsklemme anschließen. Erdungsklemme außen am Gehäuse nach Vorschrift erden. Die beiden Klemmen sind galvanisch verbunden.

Anschluss über Gehäuse

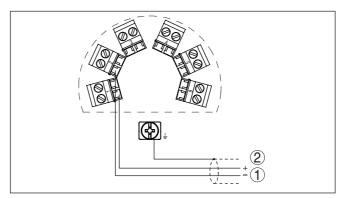


Abb. 12: Anschlussplan Gehäuse

1 Zur Spannungsversorgung bzw. zum Auswertsystem

Anschluss über VEGADIS 82

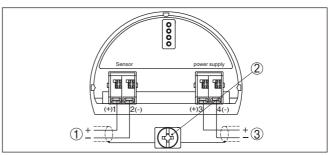


Abb. 13: Anschlussplan VEGAWELL 52 für 4 ... 20 mA-Sensoren

- 1 Zum Sensor
- 2 Klemme zum Anschluss der Kabelschirmung
- 3 Zur Spannungsversorgung

Adernummer	Adernfarbe/Polarität	Klemme VEGADIS 82
1	Braun (+)	1
2	Blau (-)	2
	Abschirmung	Erdungsklemme

5.4 Einschaltphase

Nach dem Anschluss des VEGAWELL 52 an die Spannungsversorgung bzw. nach Spannungswiederkehr führt das Gerät zunächst einen Selbsttest durch:

- Interne Prüfung der Elektronik
- 4 ... 20 mA-Ausgang springt auf das Ausfallsignal

Nach der Hochlaufzeit (Angabe siehe "Technische Daten") liefert das Gerät ein Ausgangssignal von 4 ... 20 mA. Der Wert entspricht dem

aktuellen Füllstand sowie den bereits durchgeführten Einstellungen, z. B. dem Werksabgleich.

6 Instandhalten und Störungen beseitigen

6.1 Instandhalten

Wartung

Bei bestimmungsgemäßer Verwendung ist im Normalbetrieb keine besondere Wartung erforderlich.

Bei manchen Anwendungen können Füllgutanhaftungen an der Membran das Messergebnis beeinflussen. Treffen Sie deshalb je nach Sensor und Anwendung Vorkehrungen, um starke Anhaftungen und insbesondere Aushärtungen zu vermeiden.

Reinigen

Ggf. ist die Membran zu reinigen. Hierbei ist die Beständigkeit der Werkstoffe gegenüber der Reinigung sicherzustellen, siehe hierzu die Beständigkeitsliste unter "Service" auf "www.vega.com".

6.2 Störungen beseitigen

Verhalten bei Störungen

Es liegt in der Verantwortung des Anlagenbetreibers, geeignete Maßnahmen zur Beseitigung aufgetretener Störungen zu ergreifen.

Störungsursachen

Das Gerät bietet Ihnen ein Höchstmaß an Funktionssicherheit. Dennoch können während des Betriebes Störungen auftreten. Diese können z. B. folgende Ursachen haben:

- Sensor
- Prozess
- Spannungsversorgung
- Signalauswertung

Störungsbeseitigung

Die erste Maßnahme ist die Überprüfung des Ausgangssignals. In vielen Fällen lassen sich die Ursachen auf diesem Wege feststellen und die Störungen so beseitigen.

24 Stunden Service-Hotline

Sollten diese Maßnahmen dennoch zu keinem Ergebnis führen, rufen Sie in dringenden Fällen die VEGA Service-Hotline an unter Tel. +49 1805 858550.

Die Hotline steht Ihnen auch außerhalb der üblichen Geschäftszeiten an 7 Tagen in der Woche rund um die Uhr zur Verfügung. Da wir diesen Service weltweit anbieten, erfolgt die Unterstützung in englischer Sprache. Der Service ist kostenfrei, es fallen lediglich die üblichen Telefongebühren an.

4 ... 20 mA-Signal überprüfen

Schließen Sie gemäß Anschlussplan ein Multimeter im passenden Messbereich an.

Fehlercode	Ursache	Beseitigung
4 20 mA-Sig- nal nicht stabil	Kein atmo- sphärischer Druckausgleich	Kapillare prüfen, ggf. sauber abschneiden
		Druckausgleich prüfen, ggf. Filterelement säubern

Fehlercode	Ursache	Beseitigung
4 20 mA-Signal fehlt	Falscher An- schluss an die Spannungsver- sorgung	Anschluss nach Kapitel "Anschluss- schritte" prüfen und ggf. nach Kapitel "Anschlussplan" korrigieren
	Keine Spannungsver- sorgung	Leitungen auf Unterbrechung prüfen, ggf. reparieren
	Betriebsspan- nung zu niedrig bzw. Bürden- widerstand zu hoch	Prüfen, ggf. anpassen

Bei Ex-Anwendungen sind die Regeln für die Zusammenschaltung von eigensicheren Stromkreisen zu beachten.

Verhalten nach Störungsbeseitigung

Je nach Störungsursache und getroffenen Maßnahmen sind ggf. die in Kapitel "In Betrieb nehmen" beschriebenen Handlungsschritte erneut zu durchlaufen bzw. auf Plausibilität und Vollständigkeit zu überprüfen.

6.3 Tragkabel kürzen

Das Tragkabel kann beliebig gekürzt werden. Gehen Sie wie folgt vor:

- Filteraufsatz von der Kapillarleitung entfernen
- 2. Tragkabel mit Seitenschneider auf die gewünschte Länge kürzen

orsicht

Kapillarleitung darf dabei nicht zusammengedrückt werden, da dann der Druckausgleich beeinträchtigt wird. Ggf. mit scharfem Messer nacharbeiten.

- Kabelmantel ca. 10 cm entfernen, Aderenden ca. 1 cm abisolieren
- 4. Filteraufsatz aufschieben

Die Arbeitsschritte sind damit abgeschlossen.

6.4 Tragkabel kürzen - Ausführung mit Gehäuse

Das Tragkabel kann beliebig gekürzt werden. Gehen Sie bei der Ausführung mit Kunststoff- oder Edelstahlgehäuse wie folgt vor:

- 1. Gehäusedeckel abschrauben
- Schraubklemmen lösen und Aderenden des Tragkabels aus den Schraubklemmen nehmen
- Sechskant am Gewindestutzen mit Schraubenschlüssel SW 46 festhalten und Dichtschraube SW 22 lösen

Vorsicht

Dichtschraube ist mit Loctite rosa gesichert, Losbrechmoment beachten!

Abb. 14: Schritt 4

- 1 SW 46
- 2 SW 22
- Tragkabel aus Gewindestutzen herausziehen, Druckschraube, Konushülse und Dichtkonus vom Kabel schieben
- 5. Filteraufsatz von der Kapillarleitung entfernen

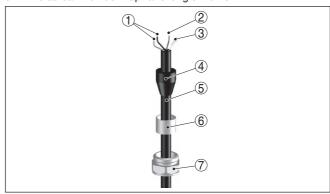


Abb. 15: Aufbau der Kabeldichtung

- 1 Anschlussleitungen (je nach Ausführung bis zu sechs Stück)
- 2 Kabelschirmung
- 3 Druckausgleichskapillare mit Filterelement
- 4 Dichtkonus
- 5 Tragkabel
- 6 Konushülse
- 7 Dichtschraube
- 6. Tragkabel mit Seitenschneider auf die gewünschte Länge kürzen
- Kabelmantel ca. 10 cm entfernen, Aderenden ca. 1 cm abisolieren, Filteraufsatz aufschieben
- Dichtschraube, Konushülse und Dichtkonus auf Tragkabel schieben und Kabel in Gewindestutzen einführen, Aderenden durch Kabeldurchführung in Montageplatte führen

Die Arbeitsschritte sind damit abgeschlossen.

6.5 Vorgehen im Reparaturfall

Ein Geräterücksendeblatt sowie detallierte Informationen zur Vorgehensweise finden Sie im Downloadbereich auf unserer Homepage. Sie helfen uns damit, die Reparatur schnell und ohne Rückfragen durchzuführen.

Gehen Sie im Reparaturfall folgendermaßen vor:

- Für jedes Gerät ein Formular ausdrucken und ausfüllen
- Das Gerät reinigen und bruchsicher verpacken
- Das ausgefüllte Formular und eventuell ein Sicherheitsdatenblatt außen auf der Verpackung anbringen
- Adresse für Rücksendung bei der für Sie zuständigen Vertretung erfragen. Sie finden diese auf unserer Homepage.

7 Ausbauen

7.1 Ausbauschritte

Warnung:

Achten Sie vor dem Ausbauen auf gefährliche Prozessbedingungen wie z. B. Druck im Behälter oder Rohrleitung, hohe Temperaturen, aggressive oder toxische Medien etc.

Beachten Sie die Kapitel "Montieren" und "An die Spannungsversorgung anschließen" und führen Sie die dort angegebenen Schritte sinngemäß umgekehrt durch.

7.2 Entsorgen

Führen Sie das Gerät einem spezialisierten Recyclingbetrieb zu und nutzen Sie dafür nicht die kommunalen Sammelstellen.

Entfernen Sie zuvor eventuell vorhandene Batterien, sofern sie aus dem Gerät entnommen werden können und führen Sie diese einer getrennten Erfassung zu.

Sollten personenbezogene Daten auf dem zu entsorgenden Altgerät gespeichert sein, löschen Sie diese vor der Entsorgung.

Sollten Sie keine Möglichkeit haben, das Altgerät fachgerecht zu entsorgen, so sprechen Sie mit uns über Rücknahme und Entsorgung.

8 Anhang

8.1 Technische Daten

Hinweis für zugelassene Geräte

Für zugelassene Geräte (z. B. mit Ex-Zulassung) gelten die technischen Daten in den entsprechenden Sicherheitshinweisen im Lieferumfang. Diese können, z. B. bei den Prozessbedingungen oder der Spannungsversorgung, von den hier aufgeführten Daten abweichen.

Alle Zulassungsdokumente können über unsere Homepage heruntergeladen werden.

Werkstoffe.	Gewichte	7ugkraft
werkstone.	Gewichte.	Zuukiaii

Werkstoffe, i	medienberührt
---------------	---------------

- Messwertaufnehmer 316L, Duplexstahl (1.4462), Duplexstahl (1.4462) mit

PE-Überzug, PVDF, PP natur, Titan

Membran
 Saphir-Keramik® (99,9 %ige Oxidkeramik)

- Fügewerkstoff Membran/Grundkörper Glaslot

Messzelle

- Messzellendichtung - einfach FKM (VP2/A) - FDA- und KTW-zugelassen, FFKM (Per-

last G75S), FFKM (Kalrez 6375), EPDM (A+P 70.10-02)

- Messzellendichtung - doppelt FFKM (Perlast G75S)+FKM (V75J), FFKM (Kal-

rez 6375)+ FFKM (Kalrez 6375), EPDM (A+P 70.10-02)

+EPDM (A+P 70.10-02)

- Tragkabel PE (FDA- und KTW-zugelassen), FEP, PUR

Kabelverschraubung am Messwert- 316L

aufnehmer

Kabeldichtung bei Tragkabel PE, PUR FKM
Kabeldichtung bei Tragkabel FEP FEP
Abspannklemme 316L

- Tragkabelverschraubung 316L, PVDF

- Gewindestutzen am Gehäuse 316L

Werkstoffe, nicht medienberührt

Gehäuse Kunststoff PBT (Polyester), 316L

Typschildträger auf TragkabelTransportschutznetzPE

Werkstoffe Messwertaufnehmerschutz

Transportschutzkappe Messwertaufneh- PE

mer ø 22 mm

Transport- und Montageschutz Mess- PA

wertaufnehmer ø 32 mm

Transport- und Montageschutz Mess- PE

wertaufnehmer PVDF

Transportschutznetz PE

Gewicht

Grundgewicht
 Tragkabel
 ca. 0,8 kg (1.764 lbs)
 ca. 0,1 kg/m (0.07 lbs/ft)

35401-DE-230227

Abspannklemme
Tragkabelverschraubung
Kunststoffgehäuse
Edelstahlgehäuse
Ca. 0,2 kg (0.441 lbs)
ca. 0,4 kg (0.882 lbs)
ca. 0,8 kg (1.764 lbs)
ca. 1,6 kg (3.528 lbs)

Zugkraft

- Zugkraft Tragkabel max. 500 N (112.4045 lbf)

Eingangsgröße

Nennmessbereiche und Überlastbarkeit in bar/kPa

Die Angaben dienen zur Übersicht und beziehen sich auf die Messzelle. Einschränkungen durch Werkstoff und Bauform des Prozessanschluss sind möglich. Es gelten jeweils die Angaben des Typschildes.

Nennmessbereich	Überlastbarkeit maxima- ler Druck	Überlastbarkeit minima- ler Druck
Überdruck		
0 0,1 bar/0 10 kPa	15 bar/1500 kPa	-0,2 bar/-20 kPa
0 0,2 bar/0 20 kPa	20 bar/2000 kPa	-0,4 bar/-40 kPa
0 0,4 bar/0 40 kPa	30 bar/3000 kPa	-0,8 bar/-80 kPa
0 1 bar/0 100 kPa	35 bar/3500 kPa	-1 bar/-100 kPa
0 2,5 bar/0 250 kPa	50 bar/5000 kPa	-1 bar/-100 kPa
0 5 bar/0 500 kPa	65 bar/6500 kPa	-1 bar/-100 kPa
0 10 bar/0 1000 kPa	90 bar/9000 kPa	-1 bar/-100 kPa
0 25 bar/0 2500 kPa	130 bar/13000 kPa	-1 bar/-100 kPa
Absolutdruck		
0 1 bar/0 100 kPa	35 bar/3500 kPa	0 bar abs.
0 2,5 bar/0 250 kPa	50 bar/5000 kPa	0 bar abs.
0 5 bar/0 500 kPa	65 bar/6500 kPa	0 bar abs.
0 10 bar/0 1000 kPa	90 bar/9000 kPa	0 bar abs.
0 25 bar/0 2500 kPa	130 bar/13000 kPa	0 bar abs.

Nennmessbereiche und Überlastbarkeit in psi

Die Angaben dienen zur Übersicht und beziehen sich auf die Messzelle. Einschränkungen durch Werkstoff und Bauform des Prozessanschluss sind möglich. Es gelten jeweils die Angaben des Typschildes.

Nennmessbereich	Überlastbarkeit maxima- ler Druck	Überlastbarkeit minima- ler Druck
Überdruck		
0 1.5 psig	200 psig	-3 psig
0 3 psig	290 psig	-6 psig
0 6 psig	430 psig	-12 psig
0 15 psig	500 psig	-15 psig

Nennmessbereich	Überlastbarkeit maxima- ler Druck	Überlastbarkeit minima- ler Druck
0 35 psig	700 psig	-15 psig
0 70 psig	950 psig	-15 psig
0 150 psig	1300 psig	-15 psig
0 350 psig	1900 psig	-15 psig
0 900 psig	2900 psig	-15 psig
Absolutdruck		
0 15 psi	500 psi	0 psi
0 35 psi	700 psi	0 psi
0 70 psi	900 psi	0 psi
0 150 psi	1300 psi	0 psi
0 350 psi	1900 psi	0 psi

Ausgangsgröße

Ausgangssignal 4	20 mA
------------------	-------

Bereich des Ausgangssignals 3,8 ... 20,5 mA

Signalauflösung 4 µA

Ausfallsignal 22 mA

Max. Ausgangsstrom 22 mA

Hochlaufzeit

bei Messabweichung ≤ 0,2 % ca. 2 sbei Messabweichung ≤ 0,1 % ca. 15 s

Sprungantwortzeit

- bei Messabweichung ≤ 0,2 % ca. ≤ 100 ms (ti: 0 s, 0 ... 63 %) - bei Messabweichung ≤ 0,1 % ca. ≤ 200 ms (ti: 0 s, 0 ... 63 %)

Referenzbedingungen und Einflussgrößen (nach DIN EN 60770-1)

Referenzbedingungen nach DIN EN 61298-1

- Temperatur +15 ... +25 °C (+59 ... +77 °F)

- Relative Luftfeuchte 45 ... 75 %

- Luftdruck 860 ... 1060 mbar/86 ... 106 kPa (12.5 ... 15.4 psig)

Kennlinienbestimmung Grenzpunkteinstellung nach IEC 61298-2

Kennliniencharakteristik Linear

Referenzeinbaulage stehend, Messmembran zeigt nach unten

Einfluss der Einbaulage < 0,2 mbar/20 Pa (0.003 psig)

Messabweichung ermittelt nach der Grenzpunktmethode nach IEC 607704)

Angaben beziehen sich auf die eingestellte Messspanne. Turn down (TD) = Nennmessbereich/ eingestellte Messspanne.

⁴⁾ Inkl. Nichtlinearität, Hysterese und Nichtwiederholbarkeit.

Messabweichung bei Ausführung < 0,2 %

- Turn down 1 : 1 bis 5 : 1 < 0.2 %

- Turn down bis 10:1 < 0.04 % x TD

Messabweichung bei Ausführung < 0,1 %

- Turn down 1 : 1 bis 5 : 1 < 0,1 %

- Turn down bis 10 : 1 < 0.02 % x TD

Einfluss der Medium- bzw. Umgebungstemperatur

Angaben beziehen sich auf die eingestellte Messspanne. Turn down (TD) = Nennmessbereich/ eingestellte Messspanne.

Mittlerer Temperaturkoeffizient des Nullsignals

Im kompensierten Temperaturbereich 0 ... +80 °C (+32 ... +176 °F), Bezugstemperatur 20 °C (68 °F).

Mittlerer Temperaturkoeffizient des Nullsignals bei Ausführung < 0,2 %

- Turn down 1 : 1 < 0,15 %/10 K - Turn down bis 5 : 1 < 0,2 %/10 K - Turn down bis 10 : 1 < 0.25 %/10 K

Mittlerer Temperaturkoeffizient des Nullsignals bei Ausführung < 0,1 %

 $\begin{array}{lll} - \ Turn \ down \ 1:1 & < 0,05 \ \%/10 \ K \\ - \ Turn \ down \ bis \ 5:1 & < 0,1 \ \%/10 \ K \\ - \ Turn \ down \ bis \ 10:1 & < 0,15 \ \%/10 \ K \end{array}$

Außerhalb des kompensierten Temperaturbereiches:

Mittlerer Temperaturkoeffizient des Nullsignals

Turn down 1 : 1typ. < 0,15 %/10 K

Thermische Änderung Stromausgang

Gilt zusätzlich für den **analogen** 4 ... 20 mA-Stromausgang und bezieht sich auf die eingestellte Messspanne.

Thermische Änderung Stromausgang < 0,15 % bei -40 ... +80 °C (-40 ... +176 °F)

Langzeitstabilität (gemäß DIN 16086, DINV 19259-1 und IEC 60770-1)

Angaben beziehen sich auf die eingestellte Messspanne. Turn down (TD) = Nennmessbereich/ eingestellte Messspanne.

Langzeitdrift des Nullsignals < (0,1 % x TD)/Jahr

Gesamtabweichung (gemäß DIN 16086)

Die Gesamtabweichung F₁, auch maximale praktische Messabweichung genannt, ist die Summe aus Grundgenauigkeit F₂ und Langzeitstabilität:

$$F_{t} = F_{p} + F_{s}$$
 $F_{perf} = \sqrt{((F_{T})^{2} + (F_{KI})^{2})}$

Mit

- F.: F. Gesamtabweichung
- F_p: F_{perf}, Grundgenauigkeit
- F.: F., Langzeitdrift

- F_T: Temperaturkoeffizient (Einfluss von Medium- bzw. Umgebungstemperatur)
- F_{ki}: Messabweichung

Umgebungsbedingungen

Umgebungstemperatur

- Tragkabel PE
 -40 ... +60 °C (-40 ... +140 °F)
 - Tragkabel PUR, FEP
 -40 ... +80 °C (-40 ... +176 °F)
 Lager- und Transporttemperatur
 -40 ... +80 °C (-40 ... +176 °F)

Prozessbedingungen

Max. Prozessdruck Messwertaufnehmer

Messbereich 0,1 bar (1.45 psig)
 Messbereich 0,2 bar (2.9 psig)
 Messbereich ab 0,4 bar (5.8 psig)
 Messbereich ab 0,4 bar (5.8 psig)

Druckstufe Prozessanschluss

- Tragkabelverschraubung 316L: PN 3, PVDF: drucklos

Gewinde am Gehäuse
 PN 3

Mediumtemperatur, je nach Ausführung

Tragkabel	Messwertaufnehmer	Mediumtemperatur
PE	Alle Ausführungen	-20 +60 °C (-4 +140 °F)
PUR	Alle Ausführungen	-20 +80 °C (-4 +176 °F)
	PE-Überzug	-20 +60 °C (-4 +140 °F)
FEP	Alle Ausführungen	-20 +80 °C (-4 +176 °F)
	PE-Überzug	-20 +60 °C (-4 +140 °F)

Vibrationsfestigkeit mechanische Schwingungen mit 4 g und 5 ... 100 Hz⁸⁾

Schockfestigkeit Ausführung G1 50 g, 2,3 ms nach EN 60068-2-27 (mechanischer

Schock)

Elektromechanische Daten

Tragkabel

Aufbau zwei Adern, ein Tragseil, eine Druckausgleichskapillare,

Schirmgeflecht, Folie, Mantel

Aderquerschnitt 0,5 mm²
 Aderwiderstand ≤ 0,036 Ω/m
 Max. Zugkraft 1200 N (269.8 lbf)
 Max. Länge 500 m (1640 ft)

⁵⁾ Begrenzung durch Überlastbarkeit maximaler Druck der Messzelle.

⁶⁾ Begrenzung durch Überlastbarkeit maximaler Druck der Messzelle.

⁷⁾ Begrenzung durch Kabeleinführung

⁸⁾ Geprüft nach den Richtlinien des Germanischen Lloyd, GL-Kennlinie 2.

- Min. Biegeradius 25 mm (0.984 in) bei 25 °C (77 °F)

- Durchmesser ca. 8 mm (0.315 in) ≥ 650 N (146.1 lbf)

- Kabelauszugskraft Messwertaufneh-

- Farbe (Nicht-Ex/Ex) - PE, PUR Schwarz/blau - Farbe (Nicht-Ex/Ex) - FEP Blau/blau

Kabeleinführung Gehäuse 1 x M20 x 1,5-Kabelverschraubung (Kabel: ø 5 ... 9 mm), 1 x M20 x 1,5-Blindstopfen

Schraubklemmen für Aderquerschnitt bis 1,5 mm² (AWG 16)

Span	nungsv	ersor	gung
------	--------	-------	------

Delilebsspannung O _r	etriebsspannung	U,
---------------------------------	-----------------	----

- Nicht-Ex-Gerät, Messabweichung 8 ... 35 V DC

< 0.2 %

- Nicht-Ex-Gerät, Messabweichung 9,6 ... 35 V DC

< 0.1 %

9.6 ... 30 V DC - Fx-ia-Gerät

Zulässige Restwelligkeit

- < 100 Hz $U_{cc} < 1 \text{ V}$ - 100 Hz ... 10 kHz $U_{cc} < 10 \text{ mV}$ Verpolungsschutz Vorhanden

Bürdenwiderstand

- Berechnung (U_B - U_{min})/0,022 A

Beispiel - Nicht-Ex-Gerät bei

U_D= 24 V DC

 $(24 \text{ V} - 9.6 \text{ V})/0.022 \text{ A} = 655 \Omega$

Integrierter Überspannungsschutz

Nennableitstoßstrom (8/20 us) 5 kA Min. Ansprechzeit $< 25 \, \mathrm{ns}$

Potenzialverbindungen im Gerät

Elektronik Nicht potenzialgebunden Galvanische Verbindung zwischen Messwertaufnehmer, Abschirmung des Tragkabels sowie metallischem Prozessanschluss und Erdungs-

klemme am Gehäuse

Elektrische Schutzmaßnahmen

Schutzart

 Messwertaufnehmer IP68 (30 bar) - Gehäuse IP66/IP67

Anschluss des speisenden Netzteils

Netze der Überspannungskategorie III

Einsatzhöhe über Meeresspiegel

- standardmäßig bis 2000 m (6562 ft)

- mit vorgeschaltetem Überspannungs- bis 5000 m (16404 ft)

schutz

Verschmutzungsgrad⁹⁾ 4
Schutzklasse III

8.2 Maße

VEGAWELL 52, 316L/Titan 22 mm

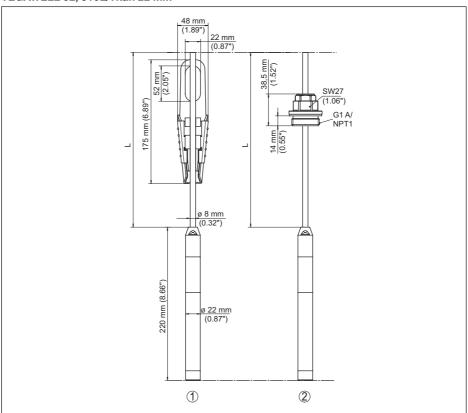


Abb. 16: VEGAWELL 52, mit Messwertaufnehmer 316L/Titan 22 mm

- 1 Messwertaufnehmer mit Abspannklemme
- 2 Messwertaufnehmer mit Tragkabelverschraubung
- L Gesamtlänge aus Konfigurator

⁹⁾ Bei Einsatz mit erfüllter Gehäuseschutzart

VEGAWELL 52, Titan 33 mm

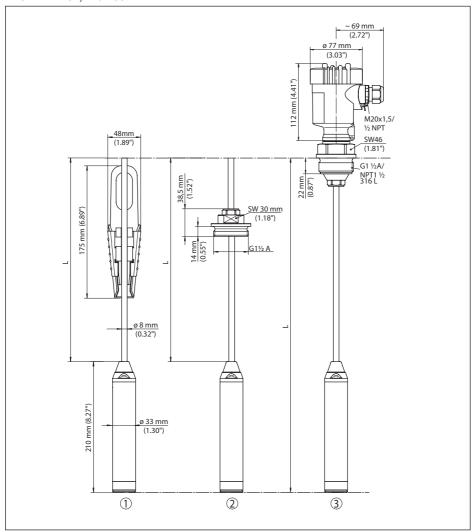


Abb. 17: VEGAWELL 52, mit Messwertaufnehmer Titan 33 mm

- 1 Messwertaufnehmer Titan mit Abspannklemme
- 2 Messwertaufnehmer Titan mit Tragkabelverschraubung
- 3 Messwertaufnehmer Titan mit Gewinde und Kunststoffgehäuse
- L Gesamtlänge aus Konfigurator

VEGAWELL 52, Duplexstahl (1.4462)/PVDF

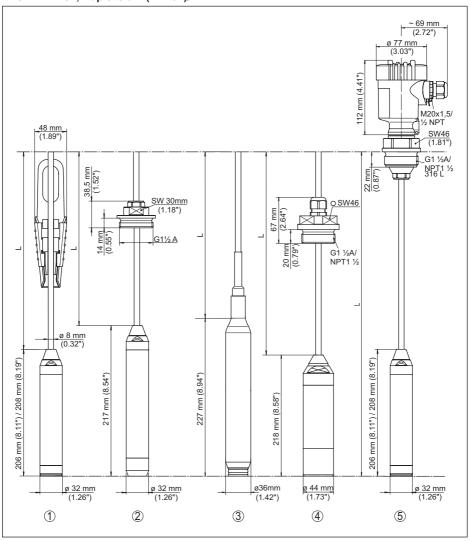


Abb. 18: VEGAWELL 52, mit Messwertaufnehmer Duplexstahl (1.4462)/PVDF

- 1 Messwertaufnehmer Duplexstahl (1.4462) Standard/Doppeldichtung mit Abspannklemme
- Messwertaufnehmer Duplexstahl (1.4462) für Tiefbrunnen (Abschlusskappe) mit Tragkabelverschraubung
 Messwertaufnehmer Duplexstahl (1.4462) mit PE-Überzug
- Messwertaufnehmer Duplexstahl (1.4462) mit PE-Überzug
 Messwertaufnehmer und Tragkabelverschraubung aus PVDF
- 5 Messwertaufnehmer Duplexstahl (1.4462) Standard/Doppeldichtung mit Gewinde und Kunststoffgehäuse
- L Gesamtlänge aus Konfigurator

VEGAWELL 52, Duplexstahl (1.4462)-Gewindeanschluss

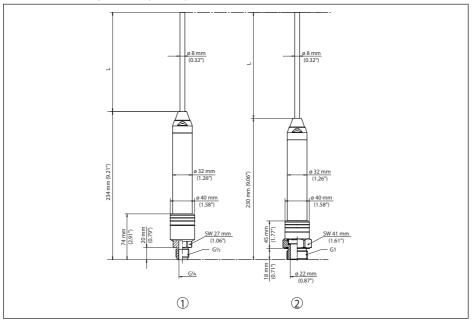


Abb. 19: VEGAWELL 52, mit Gewindeanschluss und Messwertaufnehmer Duplexstahl (1.4462)

- 1 Gewindeanschluss G1/2 innen G1/4
- 2 Gewindeanschluss G1
- L Gesamtlänge aus Konfigurator

8.3 Gewerbliche Schutzrechte

VEGA product lines are global protected by industrial property rights. Further information see www.vega.com.

Only in U.S.A.: Further information see patent label at the sensor housing.

VEGA Produktfamilien sind weltweit geschützt durch gewerbliche Schutzrechte.

Nähere Informationen unter www.vega.com.

Les lignes de produits VEGA sont globalement protégées par des droits de propriété intellectuelle. Pour plus d'informations, on pourra se référer au site www.vega.com.

VEGA lineas de productos están protegidas por los derechos en el campo de la propiedad industrial. Para mayor información revise la pagina web www.vega.com.

Линии продукции фирмы ВЕГА защищаются по всему миру правами на интеллектуальную собственность. Дальнейшую информацию смотрите на сайте www.vega.com.

VEGA系列产品在全球享有知识产权保护。

进一步信息请参见网站<www.vega.com。

8.4 Warenzeichen

Alle verwendeten Marken sowie Handels- und Firmennamen sind Eigentum ihrer rechtmäßigen Eigentümer/Urheber.

INDEX

Α

Anschluss

- Direkt 17

Anwendungsbereich 8

n

Dichtungskonzept 8 Druckausgleich 11

F

Funktionsprinzip 8

K

Kabelschirmung 16

M

Montageposition 11

Ρ

Prozessbedingungen 11

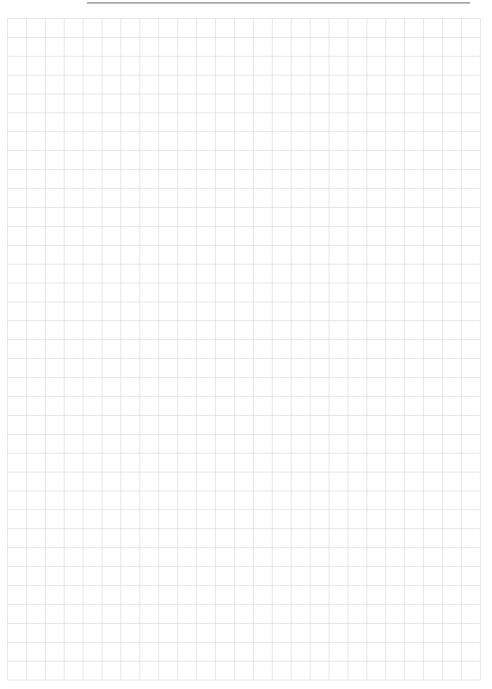
R

Reparatur 23

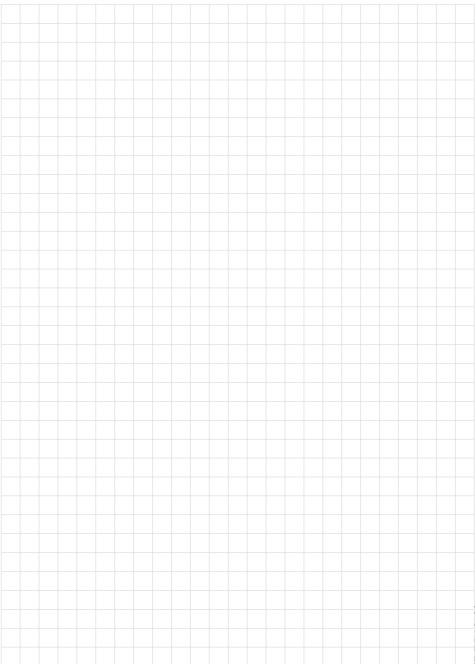
S

Service-Hotline 20 Spannungsversorgung 9

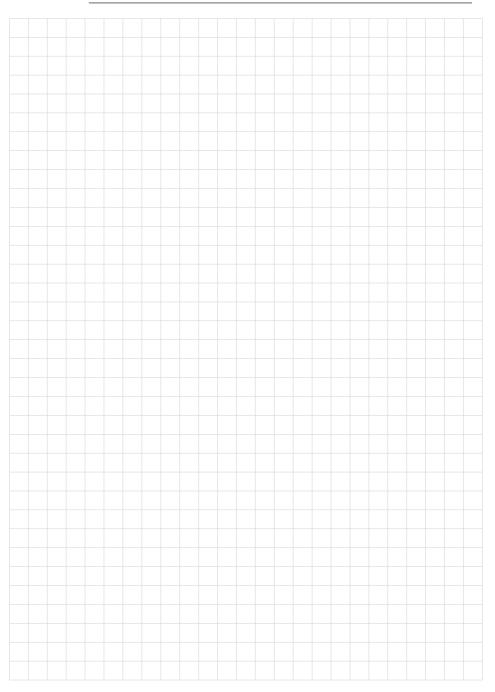
w


Wartung 20

Z


Zubehör

- Druckausgleichsgehäuse 10
- Messgerätehalter 10
- Montagewinkel 10



Druckdatum:

Die Angaben über Lieferumfang, Anwendung, Einsatz und Betriebsbedingungen der Sensoren und Auswertsysteme entsprechen den zum Zeitpunkt der Drucklegung vorhandenen Kenntnissen.
Änderungen vorbehalten

© VEGA Grieshaber KG, Schiltach/Germany 2023

35401-DE-230227