Operating Instructions

Radar sensor for continuous level measurement of bulk solids

VEGAPULS 67

Profibus PA

Document ID: 36533

Contents

1	Abou	t this document	. 4
	1.1	Function	
	1.2	Target group	
	1.3	Symbols used	. 4
2	For your safety		
_	2.1	Authorised personnel	
	2.2	Appropriate use	
	2.3	Warning about incorrect use	
	2.4	General safety instructions	
	2.5	EU conformity	
	2.6	NAMUR recommendations	
	2.7	Radio license for Europe	
	2.8	Radio license for USA	. 6
	2.9	Radio license for Canada	. 7
	2.10	Installation and operation in the USA and Canada	. 9
	2.11	Environmental instructions	. 9
3	Prod	uct description	10
•	3.1	Configuration	
	3.2	Principle of operation.	
	3.3	Packaging, transport and storage	
	3.4	Accessories and replacement parts	
		·	
4		nting	
	4.1	General instructions	
	4.2 4.3	Collar or adapter flange	
	4.4	Mounting strap Mounting instructions	
		· ·	
5	Conn	ecting to the bus system	
	5.1	Preparing the connection	
	5.2	Connecting	
	5.3	Wiring plan, single chamber housing	
	5.4	Wiring plan, double chamber housing	
	5.5	Wiring plan, double chamber housing Ex d ia	
	5.6	Double chamber housing with VEGADIS-Adapter	
	5.7	Wiring plan - version IP 66/IP 68, 1 bar	
	5.8 5.9	Set instrument address	
		·	
6	Set u	p with the display and adjustment module	
	6.1	Insert display and adjustment module	35
	6.2	Adjustment system	36
	6.3	Measured value indication - Selection of national language	
	6.4	Parameter adjustment	
	6.5	Saving the parameterisation data	54
7	Setu	o with PACTware	55
	7.1	Connect the PC	55
	7.2	Parameter adjustment	55
	7.3	Saving the parameterisation data	

8	Set u	p with other systems	57
	8.1	DD adjustment programs	57
9	Diagr	nosis, asset management and service	58
	9.1	Maintenance	58
	9.2	Measured value and event memory	58
	9.3	Asset Management function	
	9.4	Rectify faults	62
	9.5	Exchanging the electronics module	65
	9.6	Software update	
	9.7	How to proceed if a repair is necessary	66
10	Dism	ount	67
	10.1	Dismounting steps	67
	10.2	Disposal	67
11	Supplement6		68
	11.1	Technical data	68
	11.2	Communication Profibus PA	75
		Dimensions	
		Industrial property rights	
		Trademark	

Safety instructions for Ex areas

Take note of the Ex specific safety instructions for Ex applications. These instructions are attached as documents to each instrument with Ex approval and are part of the operating instructions.

Editing status: 2018-11-23

1 About this document

1.1 Function

This operating instructions provides all the information you need for mounting, connection and setup as well as important instructions for maintenance, fault rectification, the exchange of parts and the safety of the user. Please read this information before putting the instrument into operation and keep this manual accessible in the immediate vicinity of the device.

1.2 Target group

This operating instructions manual is directed to trained personnel. The contents of this manual must be made available to the qualified personnel and implemented.

1.3 Symbols used

Document ID

This symbol on the front page of this instruction refers to the Document ID. By entering the Document ID on www.vega.com you will reach the document download.

Information, tip, note

This symbol indicates helpful additional information.

Caution: If this warning is ignored, faults or malfunctions can result.

Warning: If this warning is ignored, injury to persons and/or serious damage to the instrument can result.

Danger: If this warning is ignored, serious injury to persons and/or destruction of the instrument can result.

Ex applications

This symbol indicates special instructions for Ex applications.

List

The dot set in front indicates a list with no implied sequence.

→ Action

This arrow indicates a single action.

1 Sequence of actions

Numbers set in front indicate successive steps in a procedure.

Battery disposal

This symbol indicates special information about the disposal of batteries and accumulators.

2 For your safety

2.1 Authorised personnel

All operations described in this documentation must be carried out only by trained, qualified personnel authorised by the plant operator.

During work on and with the device, the required personal protective equipment must always be worn.

2.2 Appropriate use

VEGAPULS 67 is a sensor for continuous level measurement.

You can find detailed information about the area of application in chapter "Product description".

Operational reliability is ensured only if the instrument is properly used according to the specifications in the operating instructions manual as well as possible supplementary instructions.

2.3 Warning about incorrect use

Inappropriate or incorrect use of this product can give rise to application-specific hazards, e.g. vessel overfill through incorrect mounting or adjustment. Damage to property and persons or environmental contamination can result. Also, the protective characteristics of the instrument can be impaired.

2.4 General safety instructions

This is a state-of-the-art instrument complying with all prevailing regulations and directives. The instrument must only be operated in a technically flawless and reliable condition. The operator is responsible for the trouble-free operation of the instrument. When measuring aggressive or corrosive media that can cause a dangerous situation if the instrument malfunctions, the operator has to implement suitable measures to make sure the instrument is functioning properly.

During the entire duration of use, the user is obliged to determine the compliance of the necessary occupational safety measures with the current valid rules and regulations and also take note of new regulations.

The safety instructions in this operating instructions manual, the national installation standards as well as the valid safety regulations and accident prevention rules must be observed by the user.

For safety and warranty reasons, any invasive work on the device beyond that described in the operating instructions manual may be carried out only by personnel authorised by the manufacturer. Arbitrary conversions or modifications are explicitly forbidden. For safety reasons, only the accessory specified by the manufacturer must be used.

To avoid any danger, the safety approval markings and safety tips on the device must also be observed and their meaning read in this operating instructions manual.

6

Depending on the instrument version, the emitting frequencies are in the C, K or W band range. The low emission power is far below the internationally approved limit values. When used correctly, the device poses no danger to health.

2.5 EU conformity

The device fulfils the legal requirements of the applicable EU directives. By affixing the CE marking, we confirm the conformity of the instrument with these directives.

You can find the EU conformity declaration on our website under www.vega.com/downloads.

Electromagnetic compatibility

Instruments in four-wire or Ex-d-ia version are designed for use in an industrial environment. Nevertheless, electromagnetic interference from electrical conductors and radiated emissions must be taken into account, as is usual with class A instruments according to EN 61326-1. If the instrument is used in a different environment, the electromagnetic compatibility to other instruments must be ensured by suitable measures.

2.6 NAMUR recommendations

NAMUR is the automation technology user association in the process industry in Germany. The published NAMUR recommendations are accepted as the standard in field instrumentation.

The device fulfils the requirements of the following NAMUR recommendations:

- NE 21 Electromagnetic compatibility of equipment
- NE 53 Compatibility of field devices and display/adjustment components
- NE 107 Self-monitoring and diagnosis of field devices

For further information see www.namur.de.

2.7 Radio license for Europe

The instrument was tested according to the latest issue of the following harmonized standards:

EN 302372 - Tank Level Probing Radar

It is hence approved for use inside closed vessels in countries of the EU.

Use is also approved in EFTA countries, provided the respective standards have been implemented.

For operation inside of closed vessels, points a to f in annex E of EN 302372 must be fulfilled.

2.8 Radio license for USA

This approval is only valid for USA. Hence the following text is only available in the English language.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- This device may not cause interference, and
- This device must accept any interference, including interference that may cause undesired operation of the device

This device is approved for unrestricted use only inside closed, stationary vessels made of metal, concrete and reinforced fiberglass.

For operation outside of closed vessels, the following conditions must be fulfilled:

- This device shall be installed and maintained to ensure a vertically downward orientation of the transmit antenna's main beam.
 Furthermore, the use of any mechanism that does not allow the main beam of the transmitter to be mounted vertically downward is prohibited.
- This device shall be installed only at fixed locations. The LPR device shall not operate while being moved or while inside a moving container.
- Hand-held applications are prohibited.
- Marketing to residential consumers is prohibited.

Changes or modifications not expressly approved by the manufacturer could void the user's authority to operate this equipment.

2.9 Radio license for Canada

This approval is only valid for Canada. Hence the following texts are only available in the English/French language.

This device complies with Industry Canada's license-exempt RSS standards. Operation is subject to the following conditions:

- This device may not cause interference, and
- This device must accept any interference, including interference that may cause undesired operation of the device

This device has been approved for both closed containers and openair environments with the following limitations:

- Closed Containers: For installations utilizing a tilt during installation: This device is limited to installation in a completely enclosed container made of metal, concrete or reinforced fiberglass to prevent RF emissions, which can otherwise interfere with aeronautical navigation, the maximum approved tilt angle is 10°.
- Open Air Environment: For operation outside of closed vessels, the following condition must be fulfilled: This device shall be installed and maintained to ensure a vertically downward orientation of the transmit antenna's main beam. Furthermore, the use of any mechanism that does not allow the main beam of the transmitter to be mounted vertically downward is prohibited.

The installation of the LPR/TLPR device shall be done by trained installers, in strict compliance with the manufacture's instructions.

This device shall be installed only at fixed locations. The LPR device shall not operate while being moved or while inside a moving container.

Hand-held applications are prohibited.

Marketing to residential consumers is prohibited.

The use of this device is on a "no-interference, no-protection" basis. That ist, the user shall accept operatings of high-powered radaar in the same frequency band which may interfere with or damage this device.

However, devices found to interfere with primary licensing operations will be required to be removed at the user's expense.

The installer/user of this device shall ensure that it is at least 10 km from the Dominion Astrophysical Radio Observatory (DRAO) near Penticton, British Columbia. The coordinates of the DRAO are latitude 49°19′15″ N and longitude 119°37′12″W. For devices not meeting this 10 km separation (e.g., those in the Okanagan Valley, British Columbia,) the installer/user must coordinate with, and obtain the written concurrence of, the Director of the DRAO before the equipment can be installed or operated. The Director of the DRAO may be contacted at 250-497-2300 (tel.)or 250-497-2355 (fax). (Alternatively, the Manager, Regulatory Standards, Industry Canada, may be contacted.)

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux conditions suivantes :

- L'appareil ne doit pas produire de brouillage; et
- L'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Cet appareil est homologué pour une utilisation dans les cuves fermées et les environnements ouverts avec les restrictions suivantes :

- Cuves fermées: Pour les installations impliquant une inclinaison lors de l'installation: cet appareil ne doit être installé que dans une cuve totalement fermée en en métal, en béton ou en matière plastiqe renforcée de fibres de verre, pour empêcher les émissions RF susceptibles d'interférer avec la navigation aéronautique. L'angle d'inclinaison maximum autorisé est de 10°.
- Environnement ouvert : Pour l'utilisation hors des cuves fermées, la condition suivante doit être remplie : L'appareil doit être installé et entretenu de manière à garantir une orientation verticale vers le bas du faisceau principal de l'antenne émettrice. De plus, l'utilisation de tout mécanisme ne permettant pas l'orientation verticale vers le bas du faisceau principal de l'émetteur est interdite

L'installation d'un dispositif LPR ou TLPR doit être effectuée par des installateurs qualifiés, en pleine conformité avec les instructions du fabricant.

Cet appareil ne doit être installé qu'à des emplacements fixes. L'appareil LPR ne doit pas être utilisé pendant qu'il est en train d'être déplacé ou se trouve dans un conteneur en mouvement.

Les applications portables sont interdites.

La vente à des particuliers est interdite

Ce dispositif ne peut être exploité qu'en régime de non-brouillage et de non-protection, c'est-à-dire que l'utilisateur doit accepter que des radars de haute puissance de la même bande de fréquences puissent brouiller ce dispositif ou même l'endommager. D'autre part, les capteurs de niveau qui perturbent une exploitation autorisée par licence de fonctionnement principal doivent être enlevés aux frais de leur utilisateur.

La personne qui installe/utilise ce capteur de niveau doit s'assurer qu'il se trouve à au moins 10 km de l'Observatoire fédéral de radioastrophysique (OFR) de Penticton en Colombie-Britannique. Les coordonnées de l'OFR sont : latitude N 49° 19′ 15″, longitude O 119° 37′ 12″. La personne qui installe/utilise un dispositif ne pouvant respecter cette distance de 10km (p. ex. dans la vallée de l'Okanagan [Colombie-Britannique]) doit se concerter avec le directeur de l'OFR afin d'obtenir de sa part une autorisation écrite avant que l'équipement ne puisse être installé ou mis en marche. Le directeur de l'OFR peut être contacté au 250-497-2300 (tél.) ou au 250-497-2355 (fax). (Le Directeur des Normes réglementaires d'Industrie Canada peut également être contacté).

2.10 Installation and operation in the USA and Canada

This information is only valid for USA and Canada. Hence the following text is only available in the English language.

Installations in the US shall comply with the relevant requirements of the National Electrical Code (ANSI/NFPA 70).

Installations in Canada shall comply with the relevant requirements of the Canadian Electrical Code.

2.11 Environmental instructions

Protection of the environment is one of our most important duties. That is why we have introduced an environment management system with the goal of continuously improving company environmental protection. The environment management system is certified according to DIN FN ISO 14001.

Please help us fulfil this obligation by observing the environmental instructions in this manual:

- Chapter "Packaging, transport and storage"
- Chapter "Disposal"

3 Product description

3.1 Configuration

Type label

The type label contains the most important data for identification and use of the instrument:

Fig. 1: Layout of the type label (example)

- 1 Instrument type
- 2 Product code
- 3 Approvals
- 4 Power supply and signal output, electronics
- 5 Protection rating
- 6 Measuring range
- 7 Process and ambient temperature, process pressure
- 8 Material wetted parts
- 9 Hardware and software version
- 10 Order number
- 11 Serial number of the instrument
- 12 Data matrix code for VEGA Tools app
- 13 Symbol of the device protection class
- 14 ID numbers, instrument documentation
- 15 Reminder to observe the instrument documentation

Serial number - Instrument search

The type label contains the serial number of the instrument. With it you can find the following instrument data on our homepage:

- Product code (HTML)
- Delivery date (HTML)
- Order-specific instrument features (HTML)
- Operating instructions and quick setup guide at the time of shipment (PDF)
- Order-specific sensor data for an electronics exchange (XML)
- Test certificate (PDF) optional

Go to "www.vega.com", "Search". Enter the serial number.

Alternatively, you can access the data via your smartphone:

- Download the VEGA Tools app from the "Apple App Store" or the "Google Play Store"
- . Scan the Data Matrix code on the type label of the instrument or
- Enter the serial number manually in the app

Scope of this operating instructions

This operating instructions manual applies to the following instrument versions:

- Hardware from 2.1.1
- Software from 4.5.2

Scope of delivery

The scope of delivery encompasses:

- Radar sensor
- Mounting strap with fixing material (optional)
- Documentation
 - Quick setup guide VEGAPULS 67
 - Instructions for optional instrument features
 - Ex-specific "Safety instructions" (with Ex versions)
 - If necessary, further certificates

•

Information:

The optional instrument features are described in the operating instructions manual. The respective scope of delivery results from the order specification.

3.2 Principle of operation

Application area

The VEGAPULS 67 is a radar sensor for continuous level measurement of bulk solids under simple process conditions. It is suitable for smaller silos and vessels.

The instrument is also suitable for applications in liquids.

Functional principle

The antenna of the radar sensor emits short radar pulses with a duration of approx. 1 ns. These pulses are reflected by the product and received by the antenna as echoes. The transit time of the radar pulses from emission to reception is proportional to the distance and hence to the level. The determined level is converted into an appropriate output signal and outputted as measured value.

3.3 Packaging, transport and storage

Packaging

Your instrument was protected by packaging during transport. Its capacity to handle normal loads during transport is assured by a test based on ISO 4180.

The packaging of standard instruments consists of environment-friendly, recyclable cardboard. For special versions, PE foam or PE foil is also used. Dispose of the packaging material via specialised recycling companies.

Transport

Transport must be carried out in due consideration of the notes on the transport packaging. Nonobservance of these instructions can cause damage to the device.

Transport inspection

The delivery must be checked for completeness and possible transit damage immediately at receipt. Ascertained transit damage or concealed defects must be appropriately dealt with.

Storage

Up to the time of installation, the packages must be left closed and stored according to the orientation and storage markings on the outside.

Unless otherwise indicated, the packages must be stored only under the following conditions:

- Not in the open
- Dry and dust free
- Not exposed to corrosive media
- Protected against solar radiation
- Avoiding mechanical shock and vibration

Storage and transport temperature

- Storage and transport temperature see chapter "Supplement -Technical data - Ambient conditions"
- Relative humidity 20 ... 85 %

Lifting and carrying

With instrument weights of more than 18 kg (39.68 lbs) suitable and approved equipment must be used for lifting and carrying.

3.4 Accessories and replacement parts

PLICSCOM

The display and adjustment module PLICSCOM is used for measured value indication, adjustment and diagnosis. It can be inserted into the sensor or the external display and adjustment unit and removed at any time.

The integrated Bluetooth module (optional) enables wireless adjustment via standard adjustment devices:

- Smartphone/tablet (iOS or Android operating system)
- PC/notebook with Bluetooth USB adapter (Windows operating system)

You can find further information in the operating instructions "Display and adjustment module PLICSCOM" (Document-ID 36433).

VEGACONNECT

The interface adapter VEGACONNECT enables the connection of communication-capable instruments to the USB interface of a PC. For parameter adjustment of these instruments, the adjustment software PACTware with VEGA-DTM is required.

You can find further information in the operating instructions "Interface adapter VEGACONNECT" (Document-ID 32628).

VEGADIS 81

The VEGADIS 81 is an external display and adjustment unit for VEGA plics® sensors.

For sensors with double chamber housing the interface adapter "VEGADIS adapter" is also required for VEGADIS 81.

You can find further information in the operating instructions "VEGADIS 81" (Document-ID 43814).

VEGADIS adapter

The VEGADIS adapter is an accessory part for sensors with double chamber housings. It enables the connection of VEGADIS 81 to the sensor housing via an M12 x 1 plug.

You can find further information in the supplementary instructions "VEGADIS adapter" (Document-ID 45250).

Overvoltage protection

The overvoltage arrester B81-35 is used in the single or double chamber housing instead of the connection terminals. It reduces any voltage surges that may reach the signal cables to a harmless level. You can find further information in the supplementary instructions "Overvoltage arrester B81-35" (Document-ID 50708).

Flanges

Screwed flanges are available in different versions according to the following standards: DIN 2501, EN 1092-1, BS 10, ASME B 16.5, JIS B 2210-1984, GOST 12821-80.

You can find additional information in the supplementary instructions manual "Flanges according to DIN-EN-ASME-JIS".

Protective cover

The protective cover protects the sensor housing against soiling and intense heat from solar radiation.

You will find additional information in the supplementary instructions manual "*Protective cover*" (Document-ID 34296).

Electronics module

Electronics module "VEGAPULS series 60" is a replacement part for radar sensors of VEGAPULS series 60. A different version is available for each type of signal output.

You can find further information in the operating instructions "Electronics module VEGAPULS series 60" (Document-ID 36801).

Supplementary electronics for Profibus PA

The supplementary electronics is a replacement part for sensors with Profibus PA and double chamber housing.

You can find further information in the operating instructions "Supplementary electronics for Profibus PA" (Document-ID 42767).

4 Mounting

41 General instructions

Screwing in

On devices with a threaded fitting, the hexagon on the process fitting must be tightened with a suitable wrench.

See chapter "Dimensions" for wrench size.

Warning:

The housing or the electrical connection may not be used for screwing in! Tightening can cause damage, e. g. to the rotation mechanism of the housing.

Protection against moisture

Protect your instrument against moisture ingress through the following measures:

- Use a suitable connection cable (see chapter "Connecting to power supply")
- Tighten the cable gland or plug connector
- When mounting horizontally, turn the housing so that the cable gland or plug connector point downward
- Lead the connection cable downward in front of the cable entry or plua connector.

This applies mainly to outdoor installations, in areas where high humidity is expected (e.g. through cleaning processes) and on cooled or heated vessels.

To maintain the housing protection, make sure that the housing lid is closed during operation and locked, if necessary.

Make sure that the degree of contamination specified in chapter "Technical data" meets the existing ambient conditions.

Suitability for the process conditions

Make sure before mounting that all parts of the instrument exposed to the process are suitable for the existing process conditions.

These are mainly:

- Active measuring component
- Process fitting
- Process seal

Process conditions in particular are:

- Process pressure
- Process temperature
- Chemical properties of the medium
- Abrasion and mechanical influences

You can find detailed information on the process conditions in chapter "Technical data" as well as on the type label.

conditions

14

Suitability for the ambient The instrument is suitable for standard and extended ambient conditions acc. to IEC/EN 61010-1.

4.2 Collar or adapter flange

For mounting the instrument on a socket, a combi compression flange for DN 80 (ASME 3" or JIS 80) is also available for retro fitting. Optionally, the instrument can be also equipped with an adapter flange from DN 100 (ASME 4" or JIS 100).

With the housing versions plastic, aluminium single chamber and stainless steel, the collar flange can be placed directly over the housing. With the aluminium double chamber housing, retroactive mounting in this way is not possible - the mounting type must be specified with the order.

You can find drawings of these mounting options in chapter "Dimensions".

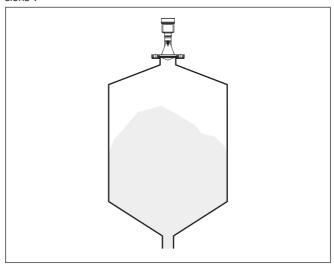


Fig. 2: Flange mounting of the radar sensor

4.3 Mounting strap

Mounting strap

The mounting strap enables simple mounting on the vessel wall or silo top. It is suitable for wall, ceiling or boom mounting. Especially in open vessels this is a very easy and effective way to align the sensor to the bulk solid surface.

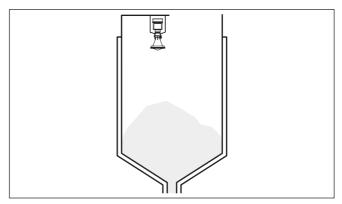


Fig. 3: Radar sensor with mounting strap

The strap is supplied unassembled and must be screwed to the sensor before setup with three hexagon socket screws M5 x 10 and spring washers. Max. torque, see chapter "*Technical data*". Required tools: Allen wrench size 4.

There are two ways to screw the strap onto the sensor. Depending on the selected version, the sensors can be swivelled in the strap as follows:

- Single chamber housing
 - Angle of inclination 180°, infinitely variable
 - Angle of inclination in three steps 0°, 90° and 180°
- Double chamber housing
 - Angle of inclination 90°, infinitely variable
 - Angle of inclination in two steps 0° and 90°

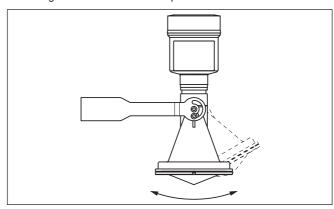


Fig. 4: Adjustment of the angle of inclination

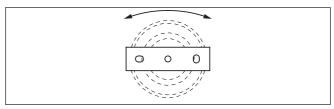


Fig. 5: Turning by fastening in the centre

4.4 Mounting instructions

Tight installation of the plastic horn antenna

For tight installation of the version with plastic horn antenna with compression or adapter flange, the following conditions must be fulfilled:

- 1. Use suitable flat seal, e.g. of EPDM with Shore hardness 25 or 50
- Make sure the number of flange screws corresponds to the number of flange holes
- 3. Tighten all screws with the torque stated in the technical data

Polarisation

The emitted radar impulses of the radar sensor are electromagnetic waves. The polarisation is the direction of the electrical share. With radar sensors, the polarisation can be used to reduce the effect of false echoes considerably by turning the instrument in the connection flange or mounting boss.

The position of the polarisation is marked on the instrument.

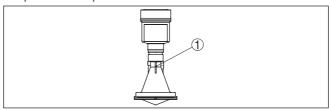


Fig. 6: Position of the polarisation

1 Marking bar

Installation position

Mount the instrument at least 200 mm (7.874 in) away from the vessel wall.

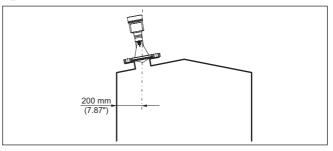


Fig. 7: Mounting the radar sensor on the vessel top

If you cannot maintain this distance, you should carry out a false signal suppression during setup. This applies particularly if buildup on the vessel wall is expected. In such cases, we recommend repeating the false signal suppression at a later date with existing buildup.

Inflowing medium

Filling from the top: Mounting should not be too close to the inflowing material as the microwave signal will be interferred. The optimum mounting position is on the opposite of the filling. To avoid strong pollution, the distance to the filter or dust extraction must be as big as possible.

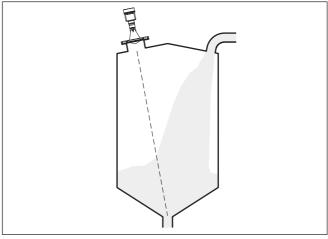


Fig. 8: Mounting of the radar sensor with inflowing medium - filling from top

Lateral filling: With bulk solids silos with lateral pneumatic filling, mounting should not be in the filling stream as the microwave signal will be interferred. The optimum mounting position is next to the filling. To avoid strong pollution, the distance to the filter or dust extraction must be as big as possible.

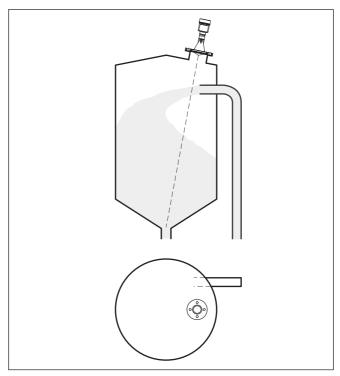


Fig. 9: Mounting of the radar sensor with inflowing medium - filling from the side

Socket with plastic horn antenna

A corresponding collar flange for DN 80 (ASME 3" or JIS 80) as well as a suitable adapter flange are available for mounting VEGAPULS 67.

With the housing versions plastic, aluminium single chamber and stainless steel, the collar flange can be placed directly over the housing. With the aluminium double chamber housing, retroactive mounting in this way is not possible - the mounting type must be specified with the order.

Information:

The mounting socket should be as short as possible and its end rounded. This reduces false echoes from the vessel mounting socket.

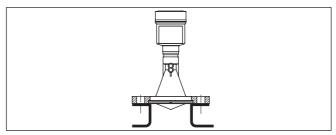
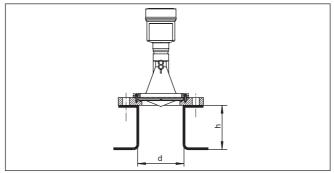



Fig. 10: Recommended socket mounting

If the medium has good reflective properties, VEGAPULS 67 can also be mounted on a longer socket piece. Recommended values for socket heights are specified in the following illustration. You must carry out a false echo storage afterwards.

The below charts specify the max. pipe socket length h depending on the diameter d.

Socket diameter d	Socket length h
80 mm	≤ 300 mm
100 mm	≤ 400 mm
150 mm	≤ 500 mm

Socket diameter d	Socket length h
3"	≤ 11.8 in
4"	≤ 15.8 in
6"	≤ 19.7 in

Tip:

In new facilities it is useful to incline the vessel socket in the direction of the outlet. False reflections from the vessel wall are thus reduced and measurement all the way down to the bottom of the conical outlet is possible.

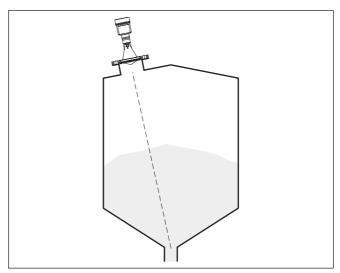


Fig. 12: Alignment in silos

Orientation

To detect nearly the complete vessel volume the sensor should be directed in such a way that the measuring beam reaches the lowest level in the vessel, i.e. the outlet.

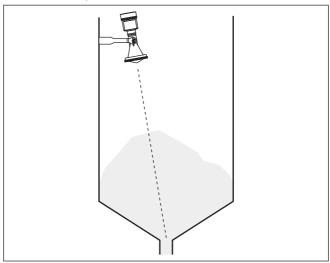


Fig. 13: Mounting in open vessel

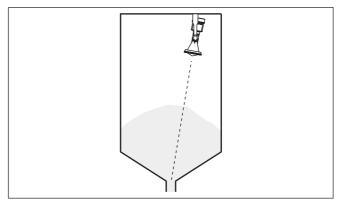


Fig. 14: Mounting on the vessel ceiling

Caution:

When mounting on the vessel ceiling mark sure that the sensor does not overfill. Depending on the measured product, this can cause a mechanical damage.

In a cylindrical silo with conical outlet, the mounting iis carried out on a socket. It should be positioned on one third up to the half of the vessel radius.

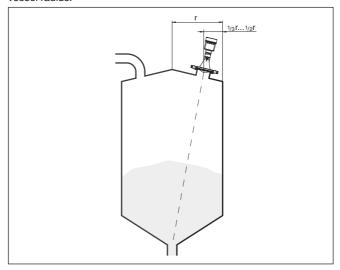


Fig. 15: Mounting position and orientation

Material heaps

Large material heaps are best measured with several instruments, which can be mounted on e.g. traverse cranes. For this type of application it is advantageous to orient the sensor perpendicular to the bulk solid surface.

The sensors do not influence each other.

Information:

Keep in mind that for these applications, the sensors are designed for relatively slow level changes. If the sensor is used on a movable boom, the max. measuring rate must be observed (see chapter "Technical data").

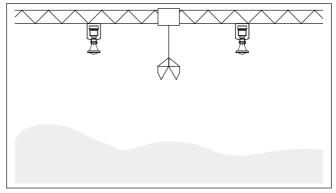


Fig. 16: Radar sensors on traverse crane

Vessel installations

The mounting location of the radar sensor should be a place where no other equipment or fixtures cross the path of the radar signals.

Vessel installations, such as e.g. ladders, limit switches, heating spirals, struts, etc., can cause false echoes and impair the useful echo. Make sure when planning your measuring point that the radar sensor has a "clear view" to the measured product.

In case of existing vessel installations, a false signal suppression should be carried out during setup.

If large vessel installations such as struts or supports cause false echoes, these can be attenuated through supplementary measures. Small, inclined sheet metal baffles above the installations scatter the radar signals and prevent direct interfering reflections.

Fig. 17: Cover flat, large-area profiles with deflectors

Agitators

If there are agitators in the vessel, a false signal suppression should be carried out with the agitators in motion. This ensures that the interfering reflections from the agitators are saved with the blades in different positions.

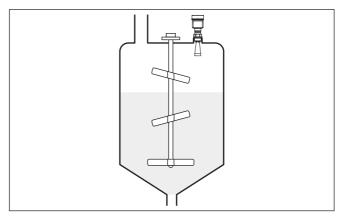


Fig. 18: Agitators

enclosures

Installation in subsurface For level measurements in concrete silos, the sensors are often mounted in protective boxes. These boxes can be for example metallic, closed subsurface enclosures.

> Minimal amounts of stray radiation from the sensor can be reflected and strengthened by the walls of the subsurface enclosures. In the case of sensors with plastic housings, this can lead to coupling disturbances. This is avoided by using sensor housings of aluminium or stainless steel as well as electromagnetic absorber material in subsurface enclosures.

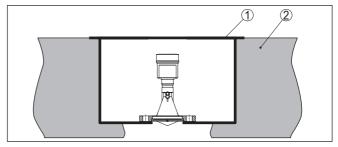


Fig. 19: Mounting of the instrument in an subsurface enclosure

- Subsurface enclosure
- 2 Concrete bottom

Mounting in multiple chamber silo

The walls of multiple-chamber silos are often made of profile material, e.g. profile sheeting, to ensure the required stability. If the radar sensor is mounted very close to a heavily structured vessel wall, substantial interfering reflections can be generated. Thus the sensor should be mounted at the largest possible distance from the separating wall.

The optimum mounting position is on the outer wall of the silo with the sensor oriented towards the outlet in the silo center.

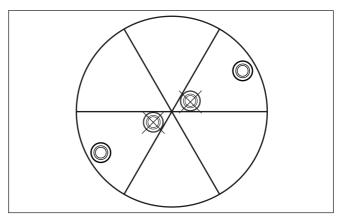


Fig. 20: Installation and orientation in multiple chamber silos

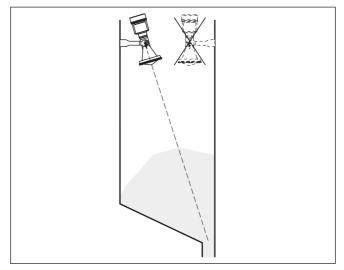


Fig. 21: Installation and orientation in multiple chamber silos

Air rinsing

Air rinsing is useful for avoiding buildup, particularly when there is strong condensation. Since VEGAPULS 67 has no direct rinsing air connection, a separate rinsing air connection must be provided in the mounting socket. By inclining this connection towards the top, a particularly effective cleaning of the antenna cover is achieved.

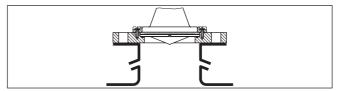


Fig. 22: Purging air connection

5 Connecting to the bus system

5.1 Preparing the connection

Safety instructions

Always keep in mind the following safety instructions:

- Carry out electrical connection by trained, qualified personnel authorised by the plant operator
- If overvoltage surges are expected, overvoltage arresters should be installed

Warning:

Connect only in the complete absence of line voltage.

Voltage supply

The voltage supply is provided by a Profibus DP /PA segment coupler.

The voltage supply range can differ depending on the instrument version. You can find the data for voltage supply in chapter "*Technical data*".

Connection cable

Connection is made with screened cable according to the Profibus specification. Power supply and digital bus signal are carried over the same two-wire connection cable.

Make sure that the cable used has the required temperature resistance and fire safety for max. occurring ambient temperature

Use cable with round cross section for instruments with housing and cable gland. To ensure the seal effect of the cable gland (IP protection rating), find out which cable outer diameter the cable gland is suitable for

Use a cable gland fitting the cable diameter.

Make sure that the entire installation is carried out according to the Profibus specification. In particular, make sure that the bus is terminated with suitable terminating resistors.

You can find detailed information of the cable specification, installation and topology in the "*Profibus PA - User and Installation Guideline*" on www.profibus.com.

Cable glands

Metric threads

In the case of instrument housings with metric thread, the cable glands are screwed in at the factory. They are sealed with plastic plugs as transport protection.

You have to remove these plugs before electrical connection.

NPT thread

In the case of instrument housings with self-sealing NPT threads, it is not possible to have the cable entries screwed in at the factory. The free openings for the cable glands are therefore covered with red dust protection caps as transport protection.

Prior to setup you have to replace these protective caps with approved cable glands or close the openings with suitable blind plugs.

On plastic housings, the NPT cable gland or the Conduit steel tube must be screwed into the threaded insert without grease.

Max. torque for all housings, see chapter "Technical data".

Cable screening and grounding

Make sure that the cable screen and grounding are carried out according to Fieldbus specification. We recommend to connect the cable screening to ground potential on both ends.

In systems with potential equalisation, connect the cable screening directly to ground potential at the power supply unit, in the connection box and at the sensor. The screen in the sensor must be connected directly to the internal ground terminal. The ground terminal outside on the housing must be connected to the potential equalisation (low impedance).

5.2 Connecting

Connection technology

The voltage supply and signal output are connected via the springloaded terminals in the housing.

Connection to the display and adjustment module or to the interface adapter is carried out via contact pins in the housing.

i

Information:

The terminal block is pluggable and can be removed from the electronics. To do this, lift the terminal block with a small screwdriver and pull it out. When reinserting the terminal block, you should hear it snap in.

Connection procedure

Proceed as follows:

- 1. Unscrew the housing lid
- If a display and adjustment module is installed, remove it by turning it slightly to the left
- 3. Loosen compression nut of the cable gland and remove blind plug
- Remove approx. 10 cm (4 in) of the cable mantle, strip approx.
 1 cm (0.4 in) of insulation from the ends of the individual wires
- 5. Insert the cable into the sensor through the cable entry

Fig. 23: Connection steps 5 and 6

- 1 Single chamber housing
- 2 Double chamber housing
- 6. Insert the wire ends into the terminals according to the wiring plan

Information:

Solid cores as well as flexible cores with wire end sleeves are inserted directly into the terminal openings. In case of flexible cores without end sleeves, press the terminal from above with a small screwdriver, the terminal opening is then free. When the screwdriver is released, the terminal closes again.

You can find further information on the max. wire cross-section under "Technical data - Electromechanical data".

- Check the hold of the wires in the terminals by lightly pulling on them
- 8. Connect the screen to the internal ground terminal, connect the external ground terminal to potential equalisation
- 9. Tighten the compression nut of the cable entry gland. The seal ring must completely encircle the cable
- 10. Reinsert the display and adjustment module, if one was installed
- 11. Screw the housing lid back on

The electrical connection is finished.

5.3 Wiring plan, single chamber housing

The following illustration applies to the non-Ex as well as to the Ex-ia version.

Electronics and connection compartment

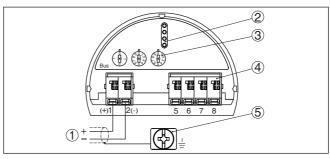


Fig. 24: Electronics and connection compartment - single chamber housing

- 1 Voltage supply, signal output
- 2 For display and adjustment module or interface adapter
- 3 Selection switch for instrument address
- 4 For external display and adjustment unit
- 5 Ground terminal for connection of the cable screening

5.4 Wiring plan, double chamber housing

The following illustrations apply to the non-Ex as well as to the Ex-ia version.

Electronics compartment

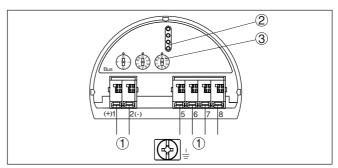


Fig. 25: Electronics compartment - double chamber housing

- 1 Internal connection to the connection compartment
- 2 Contact pins for the display and adjustment module or interface adapter
- 3 Selection switch for bus address

Connection compartment

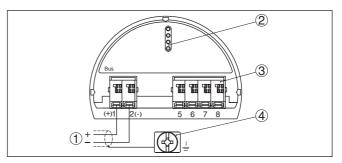


Fig. 26: Connection compartment - double chamber housing

- 1 Voltage supply, signal output
- 2 For display and adjustment module or interface adapter
- 3 For external display and adjustment unit
- 4 Ground terminal for connection of the cable screening

Information:

Parallel use of an external display and adjustment unit and a display and adjustment module in the connection compartment is not supported.

5.5 Wiring plan, double chamber housing Ex d ia

Electronics compartment

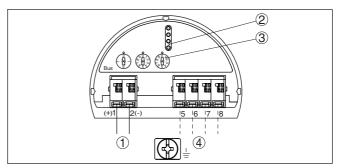


Fig. 27: Electronics compartment - Ex-d-ia double chamber housing

- 1 Internal connection to the connection compartment
- 2 Contact pins for the display and adjustment module or interface adapter
- 3 Selection switch for bus address
- 4 Internal connection to the plug connector for external display and adjustment unit (optional)

Connection compartment

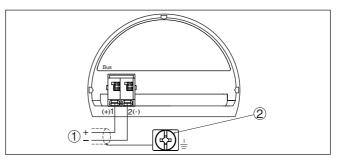


Fig. 28: Connection compartment - Ex-d-ia double chamber housing

- 1 Voltage supply, signal output
- 2 Ground terminal for connection of the cable screening

Plug M12 x 1 for external display and adjustment unit

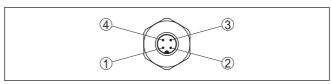


Fig. 29: Top view of the plug connector

- 1 Pin 1
- 2 Pin 2
- 3 Pin 3
- 4 Pin 4

	Colour, connection ca- ble in the sensor	Terminal, electronics module
Pin 1	Brown	5

Contact pin	Colour, connection ca- ble in the sensor	Terminal, electronics module
Pin 2	White	6
Pin 3	Blue	7
Pin 4	Black	8

5.6 Double chamber housing with VEGADIS-Adapter

Electronics compartment

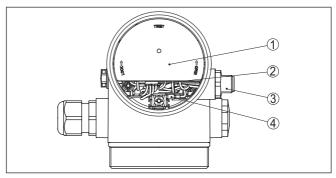


Fig. 30: View to the electronics compartment with VEGADIS adapter for connection of the external display and adjustment unit

- 1 VEGADIS adapter
- 2 Internal plug connection
- 3 Plug connector M12 x 1

Assignment of the plug connector

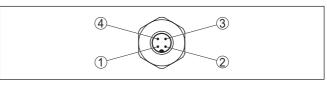


Fig. 31: View to the plug connector M12 x 1

- 1 Pin 1
- 2 Pin 2
- 3 Pin 3
- 4 Pin 4

Contact pin	Colour, connection ca- ble in the sensor	Terminal, electronics module
Pin 1	Brown	5
Pin 2	White	6
Pin 3	Blue	7
Pin 4	Black	8

Wire assignment, connection cable

5.7 Wiring plan - version IP 66/IP 68, 1 bar

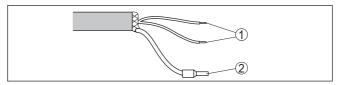


Fig. 32: Wire assignment in permanently connected connection cable

- 1 Brown (+) and blue (-) to power supply or to the processing system
- 2 Shielding

5.8 Set instrument address

Instrument address

An address must be assigned to each Profibus PA instrument. The approved addresses are between 0 and 126. Each address must only be assigned once in the Profibus PA network. The sensor is only recognized by the control system if the address is set correctly.

When the instrument is shipped, address 126 is set. This address can be used to test the function of the instrument and to connect it to a Profibus PA network. Then the address must be changed to integrate additional instruments.

The address setting is carried out either via:

- The address selection switch in the electronics compartment of the instrument (address setting via hardware)
- The display and adjustment module (address setting via software)
- PACTware/DTM (address setting via software)

Hardware addressing

The hardware addressing is effective if an address <126 is set with the address selection switches on the instrument. Software addressing is then no longer effective, the set hardware address applies.

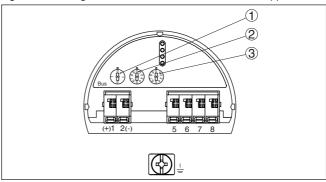


Fig. 33: Address selection switch

- 1 Addresses <100 (selection 0), addresses >100 (selection 1)
- 2 Decade of the address (selection 0 to 9)
- 3 Unit position of the address (selection 0 to 9)

Software addressing

Software addressing is only effective if address 126 or higher is set on the instrument with the address selection switches.

The addressing procedure is described in the operating instructions manual "Display and adjustment module.

5.9 Switch-on phase

After VEGAPULS 67 is connected to the bus system, the instrument carries out a self-test for approx. 30 seconds. The following steps are carried out:

- Internal check of the electronics
- Indication of a status message, e.g. "F 105 Determine measured value" on the display or PC
- Status byte goes briefly to fault value

Then the actual measured value is output to the signal cable. The value takes into account settings that have already been carried out, e.g. default setting.

6 Set up with the display and adjustment module

6.1 Insert display and adjustment module

The display and adjustment module can be inserted into the sensor and removed again at any time. You can choose any one of four different positions - each displaced by 90°. It is not necessary to interrupt the power supply.

Proceed as follows:

- 1. Unscrew the housing lid
- 2. Place the display and adjustment module on the electronics in the desired position and turn it to the right until it snaps in.
- 3. Screw housing lid with inspection window tightly back on

Disassembly is carried out in reverse order.

The display and adjustment module is powered by the sensor, an additional connection is not necessary.

Fig. 34: Installing the display and adjustment module in the electronics compartment of the single chamber housing

Fig. 35: Installing the display and adjustment module in the double chamber housing

- 1 In the electronics compartment
- 2 In the connection compartment

i

Note:

If you intend to retrofit the instrument with a display and adjustment module for continuous measured value indication, a higher lid with an inspection glass is required.

6.2 Adjustment system

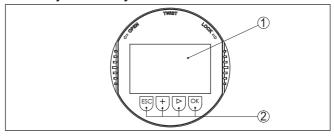


Fig. 36: Display and adjustment elements

- 1 LC display
- 2 Adjustment keys

Key functions

[OK] key:

- Move to the menu overview
- Confirm selected menu
- Edit parameter
- Save value

• [->] key:

- Change measured value presentation
- Select list entry

- Select menu items in the quick setup menu
- Select editing position
- [+] key:
 - Change value of the parameter
- [ESC] key:
 - Interrupt input
 - Jump to next higher menu

Operating system - Keys direct

The instrument is operated via the four keys of the display and adjustment module. The individual menu items are shown on the LC display. You can find the function of the individual keys in the previous illustration.

Adjustment system - keys via magnetic pen

With the Bluetooth version of the display and adjustment module you can also adjust the instrument with the magnetic pen. The pen operates the four keys of the display and adjustment module right through the closed lid (with inspection window) of the sensor housing.

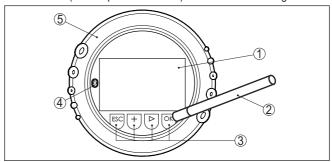


Fig. 37: Display and adjustment elements - with adjustment via magnetic pen

- 1 LC display
- 2 Magnetic pen
- 3 Adjustment keys
- 4 Bluetooth symbol
- 5 Lid with inspection window

Time functions

When the [+] and [->] keys are pressed quickly, the edited value, or the cursor, changes one value or position at a time. If the key is pressed longer than 1 s, the value or position changes continuously.

When the *[OK]* and *[ESC]* keys are pressed simultaneously for more than 5 s, the display returns to the main menu. The menu language is then switched over to "*English*".

Approx. 60 minutes after the last pressing of a key, an automatic reset to measured value indication is triggered. Any values not confirmed with *[OK]* will not be saved.

6.3 Measured value indication - Selection of national language

Measured value indication

With the [->] key you move between three different indication modes.

In the first view, the selected measured value is displayed in large digits.

In the second view, the selected measured value and a corresponding bar graph presentation are displayed.

In the third view, the selected measured value as well as a second selectable value, e.g. the temperature of the electronics, are displayed.

During the initial setup of an instrument shipped with factory settings, use the "**OK**" key to get to the menu "National language".

Selection of national language

This menu item is used to select the national language for further parameter adjustment. You can change the selection via the menu item "Setup - Display, Menu language".

With the "OK" key you move to the main menu.

6.4 Parameter adjustment

The instrument is adapted to the application conditions via the parameter adjustment. The parameter adjustment is carried out with an adjustment menu.

Main menu

The main menu is divided into five sections with the following functions:

Setup: Settings, for example, to measurement loop name, medium, application, vessel, adjustment, AI FB 1 Channel - scaling - damping

Display: Language setting, settings for the measured value indication as well as lighting

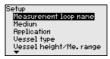
Diagnosis: Information, for example on the instrument status, pointer, measurement reliability, AI FB 1 simulation, echo curve

Further settings: Instrument units, false signal suppression, linearization, sensor address, PIN, date/time, reset, copy sensor data

Info: Instrument name, hardware and software version, date of manufacture, instrument features

In the main menu item "Setup", the individual submenu items should be selected one after the other and provided with the correct parameters to ensure optimum adjustment of the measurement. The procedure is described in the following.

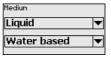
Setup - Measurement loop name


In the menu item "Sensor TAG" you edit a twelve-digit measurement loop designation.

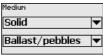
You can enter an unambiguous designation for the sensor, e.g. the measurement loop name or the tank or product designation. In digital systems and in the documentation of larger plants, a singular designation must be entered for exact identification of individual measuring points.

The available digits include:

- Letters from A ... Z
- Numbers from 0 ... 9
- Special characters +, -, /, -



Setup - Medium


Every medium has different reflective properties. With liquids, there are additional interfering factors such as turbulent product surface and foam generation. With bulk solids, the additional interfering factors are dust generation, angle of repose and secondary echoes from the vessel wall.

To adapt the sensor to these different measuring conditions, the selection "Liquid" or "Bulk solid" should be made in this menu item.

Through this selection, the sensor is optimally adapted to the product, and measurement reliability, particularly in products with poor reflective properties, is considerably increased.

Enter the requested parameters via the appropriate keys, save your settings with *[OK]* and jump to the next menu item with the *[ESC]* and the *[->]* key.

Setup - Application

In addition to the medium, also the application, i.e. the measuring site, can influence the measurement.

With this menu item, the sensor can be adapted to the applications. The adjustment possibilities depend on the selection "Liquid" or "Bulk solid" under "Medium".

The following options are available when "Liquid" is selected:

Application

Storage tank
Storage tank agitation
Storage tank on ships
Stirred vessel
Dosing vessel

Application
Stilling tube
Yeypass
Plastic vessel
Mob.plastic vessel
Open waters

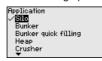
Application

Mob.plastic vessel

Open waters

Open flume
Rainwater overfall

Demonstration


•

Note:

Probably the operation of the instrument in the following applications is subject to national restrictions in respect to the radio license (see chapter "For your safety"):

- Plastic tank
- Transportable plastic tank
- Open water
- Open flume
- Rain water spillover

The following options are available when "Bulk solid" is selected:

Following the characteristics of the applications and the metrological features of the sensor with application "*Bulk solids*" are described.

Silo (slender and high):

- Vessel of metal: weld joints
- Process/measurement conditions:
 - Filling aperture too close to the sensor
 - System noise in completely empty silo increased
- Properties, sensor:
 - Stable measured values through higher averaging
 - False signal suppression during setup recommended, required for automatic false signal suppression
 - Automatic false signal suppression with partly filled vessel¹⁾

Bunker (large-volume):

- Vessel of concrete or metal:
 - Structured vessel walls
 - Installations present
- Process/measurement conditions:
 - Large distance to the medium
 - Large angles of repose
- Properties, sensor:
 - Mean averaging
 - High measured value jumps are accepted

Bunker with fast filling:

- Vessel of concrete or metal, also multiple chamber silo:
 - Structured vessel walls
- The instrument recognizes if a manual false signal suppression was carried out with empty vessel and high system noise. An automatic false signal suppression is then carried out if a product echo was detected at the beginning of the filling process.

- Installations present
- Process/measurement conditions:
 - Measured value jumps, e.g. through truck loading
 - Large distance to the medium
 - Large angles of repose
- Properties, sensor:
 - Lower averaging
 - Very high measured value jumps are accepted

Heap:

- Sensor mounting on movable conveyor belts
- Detection of the heap profile
- · Height detection during filling
- Process/measurement conditions:
 - Measured value jumps, e.g. by the profile of the heap or traverses
 - Large angles of repose
 - Measurement near the filling stream
- Properties, sensor:
 - Mean averaging
 - High measured value jumps are accepted

Crusher:

- Vessel: installations, wear and protective facilities available
- Process/measurement conditions:
 - Measured value jumps, e.g. through truck loading
 - Fast reaction time
 - Large distance to the medium
- Properties, sensor:
 - Little averaging
 - Max. reaction speed, very high measured value jumps are accepted

Demonstration:

- Adjustment for all applications which are not typically level measurement
 - Instrument demonstration
 - Object recognition/monitoring (additional settings required)
- Properties, sensor:
 - Sensor accepts all measured value changes within the measuring range immediately
 - High sensitivity to interference, because virtually no averaging

Enter the requested parameters via the appropriate keys, save your settings with *[OK]* and jump to the next menu item with the *[ESC]* and the *[->]* key.

Setup - Vessel form

Apart from the medium and the application, the vessel form itself can influence the measurement. To adapt the sensor to these measuring conditions, this menu item offers different options for vessel bottom for certain applications.

Enter the requested parameters via the appropriate keys, save your settings with *[OK]* and jump to the next menu item with the *[ESC]* and the *[->]* key.

Setup - Vessel height, measuring range

Through this selection the operating range of the sensor is adapted to the vessel height, which considerably increases measurement reliability under different basic conditions.

The min. adjustment must be carried out independently of this.

Enter the requested parameters via the appropriate keys, save your settings with *[OK]* and jump to the next menu item with the *[ESC]* and the *[->]* key.

Setup - Adjustment

Since the radar sensor is a distance measuring instrument, it is the distance from the sensor to the product surface that is measured. To indicate the actual level, the measured distance must be assigned to a certain height percentage.

To perform the adjustment, enter the distance with full and empty vessel, see the following example:

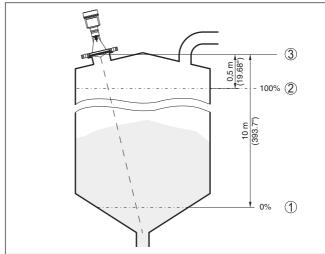


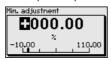
Fig. 38: Parameterisation example, Min./max. adjustment

- 1 Min. level = max. measuring distance
- 2 Max. level = min. measuring distance

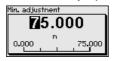
If these values are not known, an adjustment with the distances of e.g. 10 % and 90 % is possible. Starting point for these distance specifications is always the sealing surface of the flange. You can find further specifications on the reference plane in the chapters "Mounting instructions" and "Technical data". The actual level is calculated on the basis of these settings.

The actual product level during this adjustment is not important, because the min./max. adjustment is always carried out without changing the product level. These settings can be made ahead of time without the instrument having to be installed.

Setup - Min. adjustment


Proceed as follows:

Select the menu item "Setup" with [->] and confirm with [OK].
 Now select with [->] the menu item "Min. adjustment" and confirm with [OK].



 Edit the percentage value with [OK] and set the cursor to the requested position with [->].

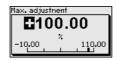
Set the requested percentage value with [+] and save with [OK].
 The cursor jumps now to the distance value.

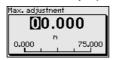


- Enter the suitable distance value in m for empty vessel (e.g. distance from the sensor to the vessel bottom) corresponding to the percentage value.
- Save settings with [OK] and move with [ESC] and [->] to the max. adjustment.

Setup - Max. adjustment

Proceed as follows:


 Select with [->] the menu item Max. adjustment and confirm with [OK].

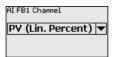


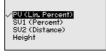
Prepare the percentage value for editing with [OK] and set the cursor to the requested position with [->].

Set the requested percentage value with [+] and save with [OK].
 The cursor jumps now to the distance value.

- Enter the appropriate distance value in m (corresponding to the percentage value) for the full vessel. Keep in mind that the max. level must lie below the min. distance to the antenna edge.
- 5. Save settings with [OK]

Setup - Al FB1 Channel


The channel is the input selector switch for function block (FB) of the sensor. Within the function block, additional scalings (Out-Scale) are carried out. In this menu item, the value fir the function block is selected:


- PV (Primary Value):
 - Linearised percentage value
- SV1 (Secondary Value 1):
 - Percent with radar, guided microwave and ultrasonic sensors
 - Pressure or height with pressure transmitters
- SV2 (Secondary Value 2):
 - Distance with radar, guided microwave and ultrasonic sensors
 - Percent with pressure transmitters
- Height

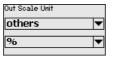
Setup - AI FB1 Scaling

Additional scalings (Out-Scale) are carried out within the function block. In this menu item, the unit of the scaling is entered.

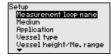
Setup Display Diagnostics Additional adjustments Info

Setup
AI FB1 Channel
AI FB1 Scaling Unit
AI FB1 Scaling
AI FB1 Danping
Lock adjustment

Scaling 0.00 lin% ≅ 0.00 % 100.00 lin% ≅ 100.00 %


Setup - AI FB1 Scaling unit

Additional scalings (Out-Scale) are carried out within the function block. In this menu item, the scaling unit is selected. For a better overview, the units are combined in groups:



Setup - AI FB1 Damping

To damp process-dependent measured value fluctuations, set an integration time of 0 ... 999 s in this menu item.

Depending on the sensor type, the factory setting is 0 s or 1 s.

Setup - Lock adjustment

In this menu item, the PIN is activated/deactivated permanently. Entering a 4-digit PIN protects the sensor data against unauthorized access and unintentional modifications. If the PIN is activated permanently, it can be deactivated temporarily (i.e. for approx. 60 min.) in any menu item.

Only the following functions are permitted with activated PIN:

- Select menu items and show data
- Read data from the sensor into the display and adjustment module

Caution:

When the PIN is active, adjustment via PACTware/DTM as well as other systems is also blocked.

In delivery status, the PIN is "0000".

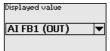
Display - Language

This menu item enables the setting of the requested national language.

Display
Language
Displayed value
Scaling variable
Scaling
Backlight

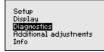
In delivery status, the sensor is set to the ordered national language.

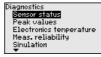
Display - Indicated value


In the menu item "Display" you can define which measured value should be presented on the display.

The sensor delivers the following measured values:

- PV (Primary Value): Linearised percentage value
- SV1 (Secondary Value 1): Percentage value after the adjustment
- SV2 (Secondary Value 2): Distance value before the adjustment
- AI FB1 (OUT)
- AI FB2 (OUT)
- AI FB3 (OUT)
- Height

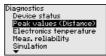




Displayed value SV1 (Percent) SU2 (Distance) AI FB1 (OUT) AI FB2 (OUT) AI FB2 (OUT)

Diagnostics - Device status

In this menu item, the device status is displayed.



(distance)

Diagnostics - Peak values The respective min. and max. measured distance values are saved in the sensor. The values are displayed in the menu item "Peak values".

Diagnosis - Electronics temperature

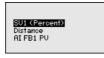
The respective min. and max. measured values of the electronics temperature are saved in the sensor. These values as well as the current temperature value are displayed in the menu item "Peak values".

Diagnostics Peak values Distance Peak indicator, reliab. Peak values further Simulation

Electronics temperature Actual 28.30 °C Min. 20.40 °C Max. 32.20 °C

Diagnosis - Measurement reliability

When non-contact level sensors are used, the measurement can be influenced by the respective process conditions. In this menu item, the measurement reliability of the level echo is displayed as a dB value. Measurement reliability equals signal strength minus noise. The higher the value, the more reliable the measurement. A well functioning measurement normally has a value > 10 dB.


Diagnosis - Simulation

In this menu item you simulate measured values via the signal output. Hence, the signal path can be tested via the segment coupler up to the input card of the control system.

How to start the simulation:

- 1. Push [OK]
- Select the requested simulation variable with [->] and confirm with [OK].
- 3. With *[OK]* you start the simulation, first of all the actual measured value is displayed in %
- 4. Start the editing mode with [OK]
- Set the requested numerical value with [+] and [->]
- 6. Push [OK]

Note:

During simulation, the simulated value is output as Profibus PA signal.

How to interrupt the simulation:

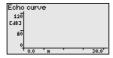
→ Push [ESC]

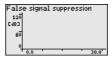
Information:

The simulation is automatically terminated 10 minutes after the last pressing of a key.

Diagnosis - Curve indication

The "Echo curve" shows the signal strength of the echoes over the measuring range in dB. The signal strength enables an evaluation of the quality of the measurement.



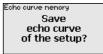


The "False signal suppression" displays the saved false echoes (see menu "Additional settings") of the empty vessel with signal strength in "dB" over the entire measuring range.

A comparison of echo curve and false signal suppression allows a more detailed statement about measurement reliability.

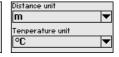
The selected curve is continuously updated. A submenu with zoom functions is opened with the **[OK]** key:

- "X-Zoom": Zoom function for the meas. distance
- "Y-Zoom": 1, 2, 5 and 10x signal magnification in "dB"
- "Unzoom": Reset the presentation to the nominal measuring range without magnification


Diagnostics - Echo curve memory

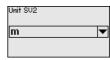
The function "Echo curve memory" makes it possible to save the echo curve at the time of setup. This is generally recommended, and it is absolutely necessary if you want to use the Asset Management functions. If possible, the curve should be saved with a low level in the vessel.

With the adjustment software PACTware and a PC, a high resolution echo curve can be displayed and used to recognize signal changes during operation. In addition, the echo curve of setup can be displayed in the echo curve window and compared with the current echo curve.



Additional adjustments - Instrument units

In this menu item you select the measured variable of the system and the temperature unit.


Additional adjustments - Unit SV2

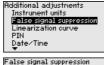

In this menu item, you define the unit of the Secondary Values 2 (SV2):

signal suppression

Additional settings - False The following circumstances cause interfering reflections and can influence the measurement:

- High mounting sockets
- Vessel internals such as struts
- Agitators
- Buildup or welded joints on vessel walls

Note:



A false signal suppression detects, marks and saves these false signals to ensure that they are ignored in the level measurement.

This should be done with the lowest possible level so that all potential interfering reflections can be detected.

Proceed as follows:

1. Select with [->] the menu item "False signal suppression" and confirm with [OK].

- 2. Confirm 3-times with [OK] and enter the actual distance from the sensor to the product surface.
- 3. All interfering signals in this range are detected by the sensor and stored after being confirmed with [OK].

Check the distance to the product surface, because if an incorrect (too large) value is entered, the existing level will be saved as a false signal. The level would then no longer be detectable in this area.

If a false signal suppression has already been saved in the sensor, the following menu window appears when selecting "False signal suppression":

Delete: An already created false signal suppression will be completely deleted. This is useful if the saved false signal suppression no longer matches the metrological conditions in the vessel.

Extend: is used to extend an already created false signal suppression. This is useful if a false signal suppression was carried out with too high a level and not all false signals could be detected. When selecting "Extend", the distance to the product surface of the created false signal suppression is displayed. This value can now be changed and the false signal suppression can be extended to this range.

Additional settings - Linearization

A linearization is necessary for all vessels in which the vessel volume does not increase linearly with the level - e.g. a horizontal cylindrical or spherical tank - and the indication or output of the volume is required. Corresponding linearization curves are preprogrammed for these vessels. They represent the correlation between the level percentage and vessel volume.

By activating the appropriate curve, the volume percentage of the vessel is displayed correctly. If the volume should not be displayed in percent but e.g. in I or kg, a scaling can be also set in the menu item "Display".

Enter the requested parameters via the appropriate keys, save your settings and jump to the next menu item with the [ESC] and [->] key.

Caution:

Note the following if instruments with appropriate approval are used as part of an overfill protection system according to WHG:

If a linearisation curve is selected, the measuring signal is no longer necessarily linear to the filling height. This must be considered by the user especially when setting the switching point on the limit signal transmitter.

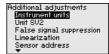
Additional adjustments - Sensor address

In this menu item, the sensor address is adjusted on Profibus ${\sf PA}.$

An address must be assigned to each Profibus PA instrument. The approved addresses are between 0 and 126. Each address must only be assigned once in the Profibus PA network. The sensor is only recognized by the control system if the address is set correctly.

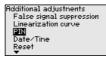
When the instrument is shipped, address 126 is set. This address can be used to test the function of the instrument and to connect it to a Profibus PA network. Then the address must be changed to integrate additional instruments.

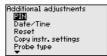
The address setting is carried out either via:


- The address selection switch in the electronics compartment of the instrument (address setting via hardware)
- The display and adjustment module (address setting via software)
- PACTware/DTM (address setting via software)

Note:

The software addressing is only possible if address 126 or higher is adjusted on the instrument with the address selection switches.

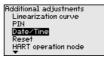



Sensor address 126

Additional settings - PIN

Entering a 4-digit PIN protects the sensor data against unauthorized access and unintentional modification. In this menu item, the PIN is displayed or edited and changed. However, this menu item is only available if adjustment is enabled in the menu "Setup".

Setup Display Diagnostics Additional adjustments Info



In delivery status, the PIN is "0000".

Time

Additional settings - Date/ In this menu item, the internal clock of the sensor is set.

Additional settings -Reset

When a reset is carried out, all settings (with only a few exceptions) are reset. The exceptions are: PIN, language, lighting, SIL and HART mode.

The following reset functions are available:

Delivery status: Restoring the parameter settings at the time of shipment from the factory incl. the order-specific settings. A created false signal suppression, user-programmable linearization

- curve, the measured value memory, echo curve memory as well as event memory will be deleted.
- Basic settings: Resetting of the parameter settings incl. special parameters to the default values of the respective instrument. Any created false signal suppression, user programmable linearization curve, measured value memory as well as event memory will be deleted.
- Setup: Resetting of the parameter settings to the default values of the respective instrument. Order-related settings remain but are not taken over into the current parameters. User-generated false signal suppression, user-programmed linearization curve, measured value memory, echo curve memory as well as event memory remain untouched. The linearization is set to linear.
- False signal suppression: Deletes a previously created false signal suppression. The false signal suppression created at the factory remains active.
- Peak values, measured value: Resets the measured min. and max. distances to the current measured value.

Select the requested reset function [->] and confirm with [OK]. The following table shows the default values of VEGAPULS 67:

Menu	Menu item	Default value
Setup	Measurement loop name	Sensor
	Medium	Liquid/Water
		Bulk solids/Crushed stones, gravel
	Application	Storage tank
		Silo
	Vessel form	Vessel bottom, dished form
		Vessel top, dished form
	Vessel height/Measur- ing range	Recommended measuring range, see "Technical data" in the supplement.
	Min. adjustment	Recommended measuring range, see "Technical data" in the supplement.
	Max. adjustment	0,000 m(d)
	Al FB1 Channnel	PV (lin. perc.)
	Al FB1 scaling unit	Height
		%
	Al FB1 scaling	0.00 lin %, 0.00 %
		100.00 lin %, 100.00 %
	Al FB1 damping	0 s
	Lock adjustment	Released
Display	Language	Like order
	Displayed value	SV 1
	Backlight	Switched on

Menu	Menu item	Default value
Additional adjustments	Distance unit	m
	Temperature unit	°C
	Unit SV2	m
	Probe length	Length of standpipe ex factory
	Linearisation curve	Linear
	Sensor address	126

instrument settings

Additional settings - Copy The instrument settings are copied with this function. The following functions are available:

- Store data from sensor in the display and adjustment module.
- Store data from display and adjustment module in the sensor

The following data or settings for adjustment of the display and adjustment module are saved:

- All data of the menu "Setup" and "Display"
- In the menu "Additional settings" the items "Distance unit. temperature unit and linearization"
- The values of the user-programmable linearisation curve

The copied data are permanently saved in an EEPROM memory in the display and adjustment module and remain there even in case of power failure. From there, they can be written into one or more sensors or kept as backup for a possible sensor exchange.

The type and the volume of the copied data depend on the respective sensor.

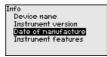
Note:

Before the data are stored in the sensor, a check is carried out to determine if the data fit the sensor. If the data do not fit, a fault signal is triggered or the function is blocked. When data are being written into the sensor, the display shows which instrument type the data originate from and which TAG-no, this sensor had.

Info - Instrument name

In this menu, you read out the instrument name and the instrument serial number:

Info - Instrument version


In this menu item, the hardware and software version of the sensor is displayed.

Setup Display Diagnostics Additional adjustments Info Device name Instrument version
Date of manufacture Instrument features

Info - Date of manufacture In this menu item, the date of factory calibration of the sensor as well as the date of the last change of sensor parameters are displayed via the display and adjustment module or via the PC.

> Setup Display Diagnostics Additional adjustments

Info - Profibus Ident Number

In this menu item, the Profibus ident number of the instrument is displayed.

Setup Display Diagnostics Additional adjustments Info Device name Instrument version Date of manufacture Profibus Ident Number Profibus Ident Number 1170

Instrument features

In this menu item, the features of the sensor such as approval, process fitting, seal, measuring range, electronics, housing and others are displayed.

Setup Display Diagnostics Additional adjustments Info Device name Instrument Dension Date of manufacture Instrument features

Instrument features Display now?

6.5 Saving the parameterisation data

On paper

We recommended writing down the adjustment data, e.g. in this operating instructions manual, and archiving them afterwards. They are thus available for multiple use or service purposes.

In the display and adjustment module

If the instrument is equipped with a display and adjustment module, the parameter adjustment data can be saved therein. The procedure is described in menu item "Copy device settings".

7 Setup with PACTware

7.1 Connect the PC

Via the interface adapter directly on the sensor

Fig. 39: Connection of the PC directly to the sensor via the interface adapter

- 1 USB cable to the PC
- 2 Interface adapter VEGACONNECT
- 3 Sensor

7.2 Parameter adjustment

Prerequisites

For parameter adjustment of the instrument via a Windows PC, the configuration software PACTware and a suitable instrument driver (DTM) according to FDT standard are required. The latest PACTware version as well as all available DTMs are compiled in a DTM Collection. The DTMs can also be integrated into other frame applications according to FDT standard.

Note:

To ensure that all instrument functions are supported, you should always use the latest DTM Collection. Furthermore, not all described functions are included in older firmware versions. You can download the latest instrument software from our homepage. A description of the update procedure is also available in the Internet.

Further setup steps are described in the operating instructions manual "DTM Collection/PACTware" attached to each DTM Collection and which can also be downloaded from the Internet. Detailed descriptions are available in the online help of PACTware and the DTMs.

Fig. 40: Example of a DTM view

Standard/Full version

56

All device DTMs are available as a free-of-charge standard version and as a full version that must be purchased. In the standard version, all functions for complete setup are already included. An assistant for simple project configuration simplifies the adjustment considerably. Saving/printing the project as well as import/export functions are also part of the standard version.

In the full version there is also an extended print function for complete project documentation as well as a save function for measured value and echo curves. In addition, there is a tank calculation program as well as a multiviewer for display and analysis of the saved measured value and echo curves.

The standard version is available as a download under www.vega.com/downloads and "Software". The full version is available on CD from the agency serving you.

7.3 Saving the parameterisation data

We recommend documenting or saving the parameterisation data via PACTware. That way the data are available for multiple use or service purposes.

8 Set up with other systems

8.1 DD adjustment programs

Device descriptions as Enhanced Device Description (EDD) are available for DD adjustment programs such as, for example, AMS^{TM} and PDM.

The files can be downloaded at www.vega.com/downloads under "Software".

9 Diagnosis, asset management and service

9.1 Maintenance

Maintenance

If the device is used properly, no special maintenance is required in normal operation.

Precaution measures against buildup

In some applications, buildup on the antenna system can influence the measuring result. Depending on the sensor and application, take measures to avoid heavy soiling of the antenna system. If necessary, clean the antenna system in certain intervals.

Cleaning

The cleaning helps that the type label and markings on the instrument are visible.

Take note of the following:

- Use only cleaning agents which do not corrode the housings, type label and seals
- Use only cleaning methods corresponding to the housing protection rating

9.2 Measured value and event memory

The instrument has several memories available for diagnostic purposes. The data remain there even in case of voltage interruption.

Measured value memory

Up to 100,000 measured values can be stored in the sensor in a ring memory. Each entry contains date/time as well as the respective measured value. Storable values are for example:

- Distance
- Filling height
- Percentage value
- Lin. percent
- Scaled
- Current value
- Measurement reliability
- Electronics temperature

When the instrument is shipped, the measured value memory is active and stores distance, measurement reliability and electronics temperature every 3 minutes.

The requested values and recording conditions are set via a PC with PACTware/DTM or the control system with EDD. Data are thus read out and also reset.

Event memory

Up to 500 events are automatically stored with a time stamp in the sensor (non-deletable). Each entry contains date/time, event type, event description and value. Event types are for example:

- Modification of a parameter
- Switch-on and switch-off times
- Status messages (according to NE 107)
- Error messages (according to NE 107)

The data are read out via a PC with PACTware/DTM or the control system with EDD.

Echo curve memory

The echo curves are stored with date and time and the corresponding echo data. The memory is divided into two sections:

Echo curve of the setup: This is used as reference echo curve for the measurement conditions during setup. Changes in the measurement conditions during operation or buildup on the sensor can thus be recognized. The echo curve of the setup is stored via:

- PC with PACTware/DTM
- Control system with EDD
- Display and adjustment module

Further echo curves: Up to 10 echo curves can be stored in a ring buffer in this memory section. Additional echo curves are stored via:

- PC with PACTware/DTM
- Control system with EDD

9.3 Asset Management function

The instrument features self-monitoring and diagnostics according to NE 107 and VDI/VDE 2650. In addition to the status messages in the following tables, detailed error messages are available under menu item "Diagnostics" via the display and adjustment module, PACTware/DTM and EDD.

Status messages

The status messages are divided into the following categories:

- Failure
- Function check
- Out of specification
- Maintenance requirement

and explained by pictographs:

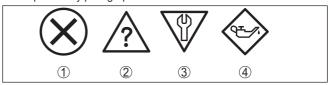


Fig. 41: Pictographs of the status messages

- 1 Failure red
- 2 Out of specification yellow
- 3 Function check orange
- 4 Maintenance blue

Failure: Due to a malfunction in the instrument, a fault message is output.

This status message is always active. It cannot be deactivated by the user.

Function check: The instrument is being worked on, the measured value is temporarily invalid (for example during simulation).

This status message is inactive by default. It can be activated by the user via PACTware/DTM or EDD.

Out of specification: The measured value is unreliable because an instrument specification was exceeded (e.g. electronics temperature).

This status message is inactive by default. It can be activated by the user via PACTware/DTM or EDD.

Maintenance: Due to external influences, the instrument function is limited. The measurement is affected, but the measured value is still valid. Plan in maintenance for the instrument because a failure is expected in the near future (e.g. due to buildup).

This status message is inactive by default. It can be activated by the user via PACTware/DTM or EDD.

Failure (failure)

Code	Cause	Rectification	DevSpec
Text message			Diagnosis Bits
F013 no measured value available	Sensor does not detect an echo during operation Antenna system dirty or defec- tive	Check or correct installation and/or parameter settings Clean or exchange process component or antenna	Bit 0
F017 Adjustment span too small	• Adjustment not within specification	Change adjustment according to the limit values (difference between min. and max. ≥ 10 mm)	Bit 1
F025 Error in the linearization table	• Index markers are not continuously rising, for example illogical value pairs	Check linearisation table Delete table/Create new	Bit 2
F036 No operable soft- ware	Failed or interrupted software update	Repeat software update Check electronics version Exchanging the electronics Send instrument for repair	Bit 3
F040 Error in the electronics	Hardware defect	Exchanging the electronics Send instrument for repair	Bit 4
F080	General software error	Disconnect operating voltage briefly	Bit 5
F105 Determine meas- ured value	The instrument is still in the start phase, the measured value could not yet be determined	Wait for the end of the switch-on phase Duration up to approx. 3 min. depending on the version and parameter settings	Bit 6
F113 Communication error	Error in the internal instrument communication	Disconnect operating voltage briefly Send instrument for repair	Bit 12
F125 Impermissible electronics temperature	Temperature of the electronics in the non-specified range	Check ambient temperature Insulate electronics Use instrument with higher temperature range	Bit 7

Code Text message	Cause	Rectification	DevSpec Diagnosis Bits
F260 Error in the cali- bration	Error in the calibration carried out in the factory Error in the EEPROM	Exchanging the electronics Send instrument for repair	Bit 8
F261	Error during setup	Repeat setup	Bit 9
Error in the config- uration	False signal suppression faulty Error when carrying out a reset	Repeat reset	
F264 Installation/Setup error	Adjustment not within the vessel height/measuring range Max. measuring range of the instrument not sufficient	Check or correct installation and/or parameter settings Use an instrument with bigger measuring range	Bit 10
F265 Measurement function disturbed	Sensor no longer carries out a measurement Operating voltage too low	Check operating voltage Carry out a reset Disconnect operating voltage briefly	Bit 11

Tab. 6: Error codes and text messages, information on causes as well as corrective measures

Function check

Code Text message	Cause	Rectification	DevSpec Diagnosis Bits
C700	A simulation is active	Finish simulation	Bit 19
Simulation active		Wait for the automatic end after 60 mins.	

Tab. 7: Error codes and text messages, information on causes as well as corrective measures

Out of specification

Code Text message	Cause	Rectification	DevSpec Diagnosis Bits
S600 Impermissible electronics temperature	Temperature of the electronics in the non-specified range	Check ambient temperature Insulate electronics Use instrument with higher temperature range	Bit 18
S601 Overfilling	Danger of vessel overfilling	Make sure that there is no further filling Check level in the vessel	Bit 20

Tab. 8: Error codes and text messages, information on causes as well as corrective measures

Maintenance

Code	Cause	Rectification	DevSpec
Text message			Diagnosis Bits
M500	● The data could not be restored	Repeat reset	Bit 13
Error during the reset "delivery status"	during the reset to delivery status	Load XML file with sensor data into the sensor	
M501	Hardware error EEPROM	Exchanging the electronics	Bit 14
Error in the non- active linearisation table		Send instrument for repair	

Code	Cause	Rectification	DevSpec
Text message			Diagnosis Bits
M502 Error in the diagnostics memory	Hardware error EEPROM	Exchanging the electronics Send instrument for repair	Bit 15
M503 Measurement reli- ability too low	The echo/noise ratio is too small for reliable measurement	Check installation and process conditions Clean the antenna Change polarisation direction Use instrument with higher sensitivity	Bit 16
M504 Error at a device interface	Hardware defect	Check connections Exchanging the electronics Send instrument for repair	Bit 17
M505 No echo available	Level echo can no longer be detected	Clean the antenna Use a more suitable antenna/ sensor Remove possible false echoes Optimize sensor position and orientation	Bit 21

Tab. 9: Error codes and text messages, information on causes as well as corrective measures

9.4 Rectify faults

Reaction when malfunction occurs

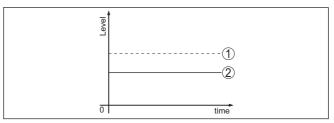
The operator of the system is responsible for taking suitable measures to rectify faults.

Procedure for fault rectification

The first measures are:

- Evaluation of fault messages via the adjustment device
- · Checking the output signal
- Treatment of measurement errors

Further comprehensive diagnostics options are available with a PC with PACTware and the suitable DTM. In many cases, the reasons can be determined in this way and faults rectified.


Treatment of measurement errors with bulk solids

The below tables show typical examples of application-related measurement errors with bulk solids. A distinction is made between measurement errors during:

- Constant level
- Filling
- Emptying

The images in column "*Error pattern*" show the real level as a broken line and the level displayed by the sensor as a continuous line.

- 1 Real level
- 2 Level displayed by the sensor

Notes:

- Whenever the sensor displays a constant value, the reason could also be that the fault setting of the current output is set to "Hold value"
- If the level indication is too low, the reason could be a line resistance that is too high

Measurement error with constant level

Fault description	Cause	Rectification
1. Measured value	Min./max. adjustment not correct	Adapt min./max. adjustment
shows a too low or too high level	Incorrect linearisation curve	Adapt linearisation curve
6 time		
2. Measured value jumps towards 100 %	Due to the process, the amplitude of the product echo decreases A false signal suppression was not carried out	Carry out a false signal suppression
o sma	Amplitude or position of a false signal has changed (e.g. condensation, buildup); false signal suppression no longer matches actual conditions	Determine the reason for the changed false signals, carry out false signal sup- pression, e.g. with condensation

Measurement error during filling

Fault description	Cause	Rectification
3. Measured value jumps towards 0 % during filling	Amplitude of a multiple echo (vessel top - product surface) is larger than the level echo	Check parameter "Application", especially vessel top, type of medium, dished bot- tom, high dielectric constant, and adapt if necessary
	The level echo cannot be distinguished from the false signal at a false signal position (jumps to multiple echo)	Remove/reduce false signal: minimize interfering installations by changing the polarization direction Chose a more suitable installation position
	Transverse reflection from an extraction funnel, amplitude of the transverse reflec- tion larger than the level echo	Direct sensor to the opposite funnel wall, avoid crossing with the filling stream

Fault description	Cause	Rectification
4. Measured value fluctuates around 10 20 %	Various echoes from an uneven product surface, e.g. a material cone	Check parameter "Type of medium" and adapt, if necessary Optimize installation position and sensor orientation
	Reflections from the product surface via the vessel wall (deflection)	Select a more suitable installation position, optimize sensor orientation, e.g. with a swivelling holder
5. Measured value jumps sporadically to 100 % during filling	Changing condensation or contamination on the antenna	Carry out a false signal suppression or increase false signal suppression with condensation/contamination in the close range by editing With bulk solids use radar sensor with purging air connection or flexible antenna cover

Measurement error during emptying

Fault description	Cause	Rectification
6. Measured value remains unchanged in the close range during emptying	False signal larger than the level echo Level echo too small	Eliminate false signals in the close range. Check: Antenna must protrude out of the socket Remove contamination on the antenna Minimize interfering installations in the close range by changing the polarization direction After eliminating the false signals, the false signal suppression must be deleted. Carry out a new false signal suppression
7. Measured value jumps sporadically towards 100 % during emptying	Changing condensation or contamination on the antenna	Carry out false signal suppression or increase false signal suppression in the close range by editing With bulk solids use radar sensor with purging air connection or flexible antenna cover
8. Measured value fluctuates around 10 20 %	Various echoes from an uneven product surface, e.g. an extraction funnel	Check parameter "Type of medium" and adapt, if necessary
	Reflections from the product surface via the vessel wall (deflection)	Optimize installation position and sensor orientation

Reaction after fault recti-

Depending on the reason for the fault and the measures taken, the steps described in chapter "Setup" must be carried out again or must be checked for plausibility and completeness.

24 hour service hotline

Should these measures not be successful, please call in urgent cases the VEGA service hotline under the phone no. **+49 1805 858550**.

The hotline is also available outside normal working hours, seven days a week around the clock.

Since we offer this service worldwide, the support is provided in English. The service itself is free of charge, the only costs involved are the normal call charges.

9.5 Exchanging the electronics module

If the electronics module is defective, it can be replaced by the user.

In Ex applications, only instruments and electronics modules with appropriate Ex approval may be used.

If there is no electronics module available on site, the electronics module can be ordered through the agency serving you. The electronics modules are adapted to the respective sensor and differ in signal output or voltage supply.

The new electronics module must be loaded with the default settings of the sensor. These are the options:

- In the factory
- Or on site by the user

In both cases, the serial number of the sensor is needed. The serial numbers are stated on the type label of the instrument, on the inside of the housing as well as on the delivery note.

When loading on site, the order data must first be downloaded from the Internet (see operating instructions "*Electronics module*").

Caution

All application-specific settings must be entered again. That's why you have to carry out a fresh setup after exchanging the electronics.

If you saved the parameter settings during the first setup of the sensor, you can transfer them to the replacement electronics module. A fresh setup is then not necessary.

9.6 Software update

The device software can be updated in the following ways:

- Interface adapter VEGACONNECT
- HART signal
- Bluetooth

Depending on the method, the following components are required:

- Instrument
- Voltage supply
- Interface adapter VEGACONNECT
- Display and adjustment module PLICSCOM with Bluetooth function
- PC with PACTware/DTM and Bluetooth USB adapter
- Current instrument software as file

You can find the current instrument software as well as detailed information on the procedure in the download area of our homepage: www.vega.com.

Caution:

Instruments with approvals can be bound to certain software versions. Therefore make sure that the approval is still effective after a software update is carried out.

You can find detailed information in the download area at www.vega.com.

9.7 How to proceed if a repair is necessary

You can find an instrument return form as well as detailed information about the procedure in the download area of our homepage: www.vega.com. By doing this you help us carry out the repair quickly and without having to call back for needed information.

In case of repair, proceed as follows:

- Print and fill out one form per instrument
- Clean the instrument and pack it damage-proof
- Attach the completed form and, if need be, also a safety data sheet outside on the packaging
- Ask the agency serving you to get the address for the return shipment. You can find the agency on our home page www.vega.com.

10 Dismount

10.1 Dismounting steps

Warning:

Before dismounting, be aware of dangerous process conditions such as e.g. pressure in the vessel or pipeline, high temperatures, corrosive or toxic products etc.

Take note of chapters "Mounting" and "Connecting to voltage supply" and carry out the listed steps in reverse order.

10.2 Disposal

The instrument consists of materials which can be recycled by specialised recycling companies. We use recyclable materials and have designed the electronics to be easily separable.

WEEE directive

The instrument does not fall in the scope of the EU WEEE directive. Article 2 of this Directive exempts electrical and electronic equipment from this requirement if it is part of another instrument that does not fall in the scope of the Directive. These include stationary industrial plants.

Pass the instrument directly on to a specialised recycling company and do not use the municipal collecting points.

If you have no way to dispose of the old instrument properly, please contact us concerning return and disposal.

11 Supplement

11.1 Technical data

Note for approved instruments

The technical data in the respective safety instructions are valid for approved instruments (e.g. with Ex approval). These data can differ from the data listed herein - for example regarding the process conditions or the voltage supply.

General data

316L corresponds to 1,4404 or 1,4435

Materials, wetted parts

Sensor

Adapter flange
 PP-GF30 black

Seal, adapter flange
 FKM (COG VI500), EPDM (COG AP310)

Focussing lense

Material, wetted parts rinsing connection

Flushing ringPP-GFK

O-ring seal, rinsing connection
 FKM (SHS FPM 70C3 GLT), EPDM (COG AP310)

- Reflux valve 316 Ti

Sealing, reflux valve
 FKM (SHS FPM 70C3 GLT), EPDM (COG AP310)

Materials, non-wetted parts

Mounting parts

Antenna conePBT-GF 30Compression flangePP-GF30 black

Mounting strap
Fixing screws, mounting strap
Fixing screws, adapter flange
304

Housing

Plastic housing
 Plastic PBT (Polyester)

Aluminium die-cast housing
 Aluminium die-casting AlSi10Mg, powder-coated (Basis:

Polyester)

Stainless steel housing
 316L

Cable gland
 PA, stainless steel, brass

Sealing: cable glandBlind pluq: cable glandPA

Seal between housing and housing lid Silicone SI 850 R, NBR silicone-free
 Inspection window housing cover
 Polycarbonate (UL-746-C listed), glass²⁾

- Ground terminal 316L

Weight depending on process fitting and 0.7 ... 3.4 kg (1.543 ... 7.496 lbs)

housing material

²⁾ Glass with Aluminium and stainless steel precision casting housing

Torques

Max. torques

- Mounting screws, mounting strap on 4 Nm (2.950 lbf ft)

sensor housing

- Flange screws, compression flange 5 Nm (3.689 lbf ft)

DN 80

- Terminal screws, adapter flange - 2.5 Nm (1.844 lbf ft)

antenna

- Flange screws, adapter flange DN 100 7 Nm (5.163 lbf ft)

Max. torques for NPT cable glands and Conduit tubes

Plastic housing
 Aluminium/Stainless steel housing
 50 Nm (36.88 lbf ft)

Input variable

Measured variable

The measured quantity is the distance between the end of the sensor antenna and the product surface. The reference plane for the measurement is the lower side of the flange.

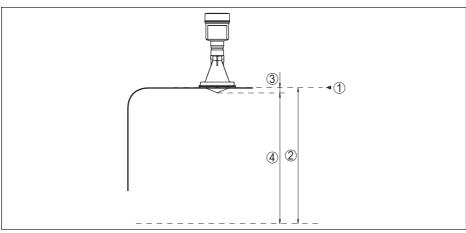


Fig. 51: Data of the input variable

- 1 Reference plane
- 2 Measured variable, max. measuring range
- 3 Antenna length
- 4 Utilisable measuring range

 $\begin{tabular}{lll} Max. measuring range & 15 m (49.21 ft) \\ Recommended measuring range & up to 15 m (49.21 ft) \\ \end{tabular}$

Output variable

Output signal digital output signal, format according to IEEE-754

Sensor address 126 (default setting)
Damping (63 % of the input variable) 0 ... 999 s, adjustable

Profibus PA profile 3.02 Number of FBs with AI (function blocks 3

with analogue input)

Default values

- 1. FB
- 2. FB
- 3. FB
Primary Value (filling height linearized in %)
Secondary Value 1 (filling height in %)
Secondary Value 2 (distance value)

Current value

- Non-Ex and Ex ia instrument 10 mA, ± 0.5 mA - Ex-d-ia instruments 16 mA, ± 0.5 mA Resolution, digital < 1 mm (0.039 in)

Deviation (according to DIN EN 60770-1)

Process reference conditions according to DIN EN 61298-1

- Temperature +18 ... +30 °C (+64 ... +86 °F)

- Relative humidity 45 ... 75 %

- Air pressure 860 ... 1060 mbar/86 ... 106 kPa (12.5 ... 15.4 psig)

Installation reference conditions

Min. distance to internal installations > 200 mm (7.874 in)Reflector Flat plate reflector

- False reflections Biggest false signal, 20 dB smaller than the useful signal

Deviation with liquids ≤ 2 mm (meas. distance > 1.0 m/3.280 ft)

Non-repeatability³⁾ $\leq 1 \text{ mm}$

Deviation with bulk solids

The values depend to a great extent on the application.

Binding specifications are thus not possible.

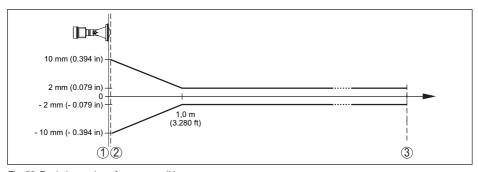


Fig. 52: Deviation under reference conditions

- 1 Reference plane
- 2 Antenna edge
- 3 Recommended measuring range

Variables influencing measurement accuracy

Temperature drift - Digital output < 3 mm/10 K, max. 10 mm

3) Already included in the meas. deviation

Additional deviation through electromag- < 50 mm netic interference acc. to EN 61326

Characteristics and performance data

Measuring frequency K-band (26 GHz technology)

Measuring cycle time approx. 700 ms Step response time⁴⁾ ≤ 3 s Beam angle⁵⁾ 10°

Emitted HF power (depending on the parameter setting)⁶⁾

- Average spectral transmission power -14 dBm/MHz EIRP

density

Max. spectral transmission power +43 dBm/50 MHz EIRP

density

- Max. power density at a distance of < 1 μW/cm²

1 m

Ambient conditions

Ambient, storage and transport tempera- -40 \dots +80 °C (-40 \dots +176 °F) ture

Process conditions

Process temperature (measured on the -40 ... +80 °C (-40 ... +176 °F)

process fitting)

Vessel pressure -1 ... 2 bar (-100 ... 200 kPa/-14.5 ... 29.0 psig)
Vessel pressure - Version with adapter -1 ... 1 bar (-100 ... 100 kPa/-14.5 ... 14.5 psig)

Vessel pressure - Version with adapter flange from DN 100 PP or PP-GF 30

Vibration resistance

- With adapter flange 2 g at 5 ... 200 Hz according to EN 60068-2-6 (vibration

with resonance)

- with mounting strap 1 g at 5 ... 200 Hz according to EN 60068-2-6 (vibration

with resonance)

Shock resistance 100 g, 6 ms according to EN 60068-2-27 (mechanical

shock)

Electromechanical data - version IP 66/IP 67 and IP 66/IP 68; 0.2 bar

Options of the cable entry

Cable entry
 M20 x 1.5; ½ NPT

Cable gland
 M20 x 1.5; ½ NPT (cable ø see below table)

− Blind plug
 M20 x 1.5; ½ NPT

- Closing cap ½ NPT

⁶⁾ EIRP: Equivalent Isotropic Radiated Power.

Time span after a sudden measuring distance change by max. 0.5 m in liquid applications, max 2 m with bulk solids applications, until the output signal has taken for the first time 90 % of the final value (IEC 61298-2).

⁵⁾ Outside the specified beam angle, the energy level of the radar signal is 50% (-3 dB) less.

Material ca- ble gland	Material seal insert	Cable diameter				
		4.5 8.5 mm	5 9 mm	6 12 mm	7 12 mm	10 14 mm
PA	NBR	-	•	•	-	•
Brass, nickel- plated	NBR	•	•	•	-	-
Stainless steel	NBR	-	•	•	-	•

Wire cross-section (spring-loaded terminals)

Massive wire, stranded wire
 Stranded wire with end sleeve
 0.2 ... 2.5 mm² (AWG 24 ... 14)
 0.2 ... 1.5 mm² (AWG 24 ... 16)

Electromechanical data - version IP 66/IP 68 (1 bar)

Options of the cable entry

- Cable gland with integrated connec- M20 x 1.5 (cable: ø 5 ... 9 mm)

tion cable

- Cable entry ½ NPT

- Blind plug M20 x 1.5; ½ NPT

Connection cable

- Wire cross-section 0.5 mm² (AWG 20)

– Wire resistance $< 0.036 \Omega/m$

- Tensile strength < 1200 N (270 lbf)

Standard length
 Max. length
 Max. length
 Max. length
 Max. length

- Min. bending radius 25 mm (0.984 in) with 25 °C (77 °F)

- Diameter approx. 8 mm (0.315 in)

Colour - Non-Ex versionColour - Ex-versionBlue

Display and adjustment module

Display element	Display with backlight

Measured value indication

Number of digits5

Adjustment elements

- 4 keys [OK], [->], [+], [ESC]

- Switch Bluetooth On/Off

Bluetooth interface

Standard Bluetooth smartEffective range 25 m (82.02 ft)

Protection rating

unassembled IP 20Mounted in the housing without lid IP 40

Materials

- Housing ABS

Inspection windowPolyester foilFunctional safetySIL non-reactive

Interface to the external display and adjustment unit

Data transmission Digital (I²C-Bus)
Connection cable Four-wire

Sensor version	Configuration, connection cable									
	Cable length	Standard cable	Special cable	Screened						
4 20 mA/HART	50 m	•	-	-						
Profibus PA, Foundation Fieldbus	25 m	-	•	•						

Integrated clock

Date format Day.Month.Year

Time format 12 h/24 h

Time zone, factory setting CET

Max. rate deviation 10.5 min/year

Additional output parameter - Electronics temperature

Range -40 ... +85 °C (-40 ... +185 °F)

Resolution < 0.1 K
Deviation ±3 K

Output of the temperature values

Indication
 Via the display and adjustment module

- Analogue Via the current output, the additional current output

Digital
 Via the digital output signal (depending on the electron-

ics version)

Voltage supply

Operating voltage U

- Non-Ex instrument 9 ... 32 V DC

- Ex-ia instrument - Power supply 9 ... 17.5 V DC

FISCO model

- Ex-ia instrument - Power supply

9 ... 24 V DC

ENTITY modelEx-d-ia instrument

16 ... 32 V DC

Operating voltage U_p - illuminated display and adjustment module

- Non-Ex instrument 13.5 ... 32 V DC

- Ex-ia instrument - Power supply 13.5 ... 17.5 V DC

FISCO model

- Ex-ia instrument - Power supply 13.5 ... 24 V DC

ENTITY model

Ex-d-ia instrument
 No lighting possible (integrated ia barrier)

Number of sensors per DP/PA segment coupler, max.

- Non-Ex 32 - Ex 10

Potential connections and electrical separating measures in the instrument

Electronics Not non-floating

Reference voltage⁷⁾ 500 V AC

Conductive connection Between ground terminal and metallic process fitting

Overvoltage protection

Highest continuous operating voltage 35 V DC

Max. permissible input current 500 mA

Response voltage > 500 V

Discharge current < 10 kA (8/20 μs)

Electrical protective measures

Housing material	Version	Protection acc. to IEC 60529	Protection acc. to NEMA
Plastic	Single chamber	IP 66/IP 67	Type 4X
	Double chamber	IP 66/IP 67	Type 4X
Aluminium	Single chamber	IP 66/IP 68 (0.2 bar) IP 68 (1 bar)	Type 6P
	Double chamber	IP 66/IP 68 (0.2 bar) IP 68 (1 bar)	Type 6P
Stainless steel (electro-polished)	Single chamber	IP 66/IP 68 (0.2 bar)	Type 6P
Stainless steel (precision casting)	Single chamber	IP 66/IP 68 (0.2 bar) IP 68 (1 bar)	Type 6P
	Double chamber	IP 66/IP 68 (0.2 bar) IP 68 (1 bar)	Type 6P

Connection of the feeding power supply Networks of overvoltage category III unit

Altitude above sea level

by default up to 2000 m (6562 ft)
 with connected overvoltage protection up to 5000 m (16404 ft)

Pollution degree (with fulfilled housing 4

protection)

Protection rating (IEC 61010-1)

⁷⁾ Galvanic separation between electronics and metal housing parts

Approvals

Instruments with approvals can have different technical specifications depending on the version.

For that reason the associated approval documents of these instruments have to be carefully noted. They are part of the delivery or can be downloaded under www.vega.com, "Instrument search (serial number)" as well as in the download area.

11.2 Communication Profibus PA

Instrument master file

The instrument master file (GSD) contains the characteristic data of the Profibus PA instrument. These data are, e.g. the permissible transmission rates as well as information on diagnostics values and the format of the measured value output by the PA instrument.

A bitmap file is also provided for the Profibus network planning tool. This file is installed automatically when the GSD file is integrated. The bitmap file is used for symbolic indication of the PA instrument in the configuration tool.

ID number

Each Profibus instrument gets an unambiguous ident number (ID number) from the Profibus user organisation (PNO). This ID number is also included in the name of the GSD file. Optionally in addition to this manufacturer-specific GSD file, PNO also provides a general so-called profile-specific GSD file. If the general GSD file is used, the sensor must be set to the profile-specific ident number via the DTM software. By default, the sensor operates with the manufacturer-specific ID number. When using the instruments on a segment coupler SK-2 or SK-3, no special GSD files are required.

The following table shows the instrument ID and the GSD file names for VEGAPULS radar sensors.

Device name	Instru	ment ID	GSD file name					
	VEGA	Instrument class in profile 3.02	VEGA	Profile-specific				
VEGAPULS WL 61	0x0CDB	0x9702	PSWL0CDB.GSD	PA139702.GSD				
VEGAPULS 61	0x0BFC	0x9702	PS610BFC.GSD	PA139702.GSD				
VEGAPULS 62	0x0BFD	0x9702	PS620BFD.GSD	PA139702.GSD				
VEGAPULS 63	0x0BFE	0x9702	PS630BFE.GSD	PA139702.GSD				
VEGAPULS 65	0x0BFF	0x9702	PS650BFF.GSD	PA139702.GSD				
VEGAPULS 66	0x0C00	0x9702	PS660C00.GSD	PA139702.GSD				
VEGAPULS 67	0x0C01	0x9702	PS670C01.GSD	PA139702.GSD				
VEGAPULS SR 68	0x0CDC	0x9702	PSSR0CDC.GSD	PA139702.GSD				
VEGAPULS 68	0x0C02	0x9702	PS680C02.GSD	PA139702.GSD				
VEGAPULS 69	0x0BFA	0x9702	VE010BFA.GSD	PA139702.GSD				

Cyclical data traffic

The master class 1 (e.g. PLC) cyclically reads out measured values from the sensor during operation. The below block diagram below shows which data can be accessed by the PLC.

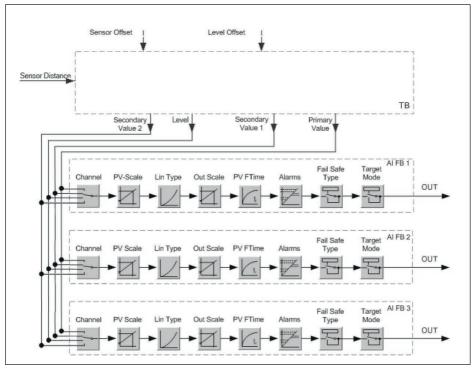


Fig. 53: VEGAPULS 67: Block diagram with AI FB 1 ... AI FB 3 OUT values

TB Transducer Block

FB 1 ... FB 3

Function Block

Module of the PA sensors

For the cyclic data traffic, VEGAPULS 67 provides the following modules:

- AI FB1 (OUT)
 - Out value of the AI FB1 after scaling
- AI FB2 (OUT)
 - Out value of the AI FB2 after scaling
- AI FB3 (OUT)
 - Out value of the AI FB3 after scaling
- Free Place
 - This module must be used if a value in the data telegram of the cyclical data traffic should not be used (e.g. replacement of temperature and Additional Cyclic Value)

A maximum of three modules can be active. By means of the configuration software of the Profibus master you can determine the configuration of the cyclical data telegram with these modules. The procedure depends on the respective configuration software.

Note:

The modules are available in two versions:

 Short for Profibus master supporting only one "Identifier Format" byte, e.g. Allen Bradley

 Long for Profibus master only supporting the "Identifier Format" byte, e.g. Siemens \$7-300/400

Examples of telegram configuration

In the following you will see how the modules can be combined and how the appendant data telegram is structured.

Example 1

- AI FB1 (OUT)
- AI FB2 (OUT)
- AI FB3 (OUT)

Byte- No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
For- mat	IEEE	EEE-754-Floating point state value				IEEE	-754-F va	loating lue	point	Sta- tus	IEEE	Sta- tus			
Value	AI FB1 (OUT) AI FB1					AI FB2	(OUT)		AI FB2	AI FB3 (OUT)				AI FB3	

Example 2

- AI FB1 (OUT)
- Free Place
- Free Place

Byte-No.	1	2	3	4	5				
Format		IEEE-754-Floa	ting point value		Status				
Value	AI FB1 (OUT) AI FB1								

Note:

Bytes 6-15 are not used in this example.

Data format of the output signal

Byte4	Byte3	Byte2	Byte1	Byte0
Status	Va	alue (IEE	E-754)	

Fig. 54: Data format of the output signal

The status byte corresponds to profile 3.02 "Profibus PA Profile for Process Control Devices" coded. The status "Measured value OK" is coded as 80 (hex) (Bit7 = 1, Bit6 ... 0 = 0).

The measured value is transferred as a 32 bit floating point number in the IEEE-754 format.

			Byte	e n					Byte n+1							Byte n+2								Byte n+3							
Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
VZ	27	26	25	24	2 ³	22	21	20	2-1	2-2	2-3	2-4	2.5	2-6	2.7	2-8	2-9	210	211	212	213	214	215	216	217	218	219	220	221	2 ²²	2 -23
Sigr Bit	1		Exp	one	ent					Significant						Significant								Significant							

Value = $(-1)^{VZ} \cdot 2^{(Exponent - 127)} \cdot (1 + Significant)$

Fig. 55: Data format of the measured value

Coding of the status byte associated with the PA output value

You can find further information for the coding of the status byte in the Device Description 3.02 on www.profibus.com.

Status code	Description according to Profibus standard	Possible cause						
0 x 00	bad - non-specific	Flash-Update active						
0 x 04	bad - configuration error	Adjustment error Configuration error with PV-Scale (PV-Span too small) Unit irregularity Error in the linearization table						
0 x 0C	bad - sensor failure	Hardware error Converter error Leakage pulse error Trigger error						
0 x 10	bad - sensor failure	Measured value generation error Temperature measurement error						
0 x 1f	bad - out of service con- stant	"Out of Service" mode switched on						
0 x 44	uncertain - last unstable value	Failsafe replacement value (Failsafe-Mode = "Last val- ue" and already valid measured value since switching on)						
0 x 48	uncertain substitute set	Switch on simulation Failsafe replacement value (Failsafe-Mode = "Fsafe value")						
0 x 4c	uncertain - initial value	Failsafe replacement value (Failsafe-Mode = "Last valid value" and no valid measured value since switching on)						
0 x 51	uncertain - sensor; con- version not accurate - low limited	Sensor value < lower limit						
0 x 52	uncertain - sensor; con- version not accurate - high limited	Sensor value > upper limit						
0 x 80	good (non-cascade) - OK	ОК						
0 x 84	good (non-cascade) - ac- tive block alarm	Static revision (FB, TB) changed (10 sec. active, after the parameter of the static category has been written)						
0 x 89	good (non-cascade) - active advisory alarm - low limited	Lo-Alarm						
0 x 8a	good (non-cascade) - active advisory alarm - high limited	Hi-Alarm						
0 x 8d	good (non-cascade) - active critical alarm - low limited	Lo-Lo-Alarm						
0 x 8e	good (non-cascade) - ac- tive critical alarm - high limited	Hi-Hi-Alarm						

11.3 Dimensions

The following dimensional drawings represent only an extract of all possible versions. Detailed dimensional drawings can be downloaded at www.vega.com/downloads under "Drawings".

Plastic housing

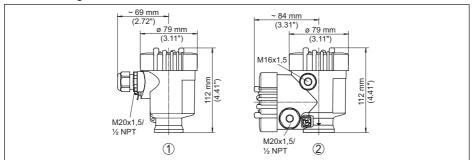


Fig. 56: Housing versions in protection IP 66/IP 67 (with integrated display and adjustment module the housing is 9 mm/0.35 in higher)

- 1 Plastic single chamber
- 2 Plastic double chamber

Aluminium housing

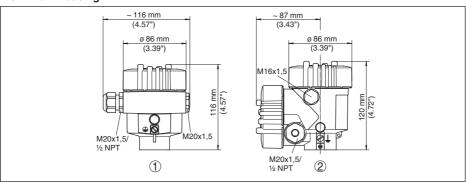


Fig. 57: Housing versions with protection rating IP 66/IP 68 (0.2 bar) (with integrated display and adjustment module the housing is 18 mm/0.71 in higher)

- 1 Aluminium single chamber
- 2 Aluminium double chamber

Aluminium housing with protection rating IP 66/IP 68 (1 bar)

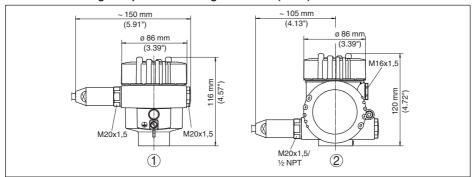


Fig. 58: Housing version with protection rating IP 66/IP 68 (1 bar), (with integrated display and adjustment module the housing is 18 mm/0.71 in higher)

Aluminium - single chamber
 Aluminium - double chamber

Stainless steel housing

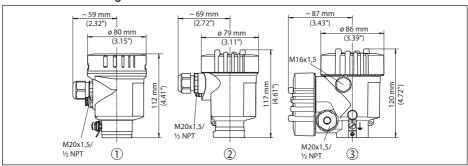


Fig. 59: Housing versions with protection rating IP 66/IP 68 (0.2 bar) (with integrated display and adjustment module the housing is 18 mm/0.71 in higher)

- 1 Stainless steel single chamber (electropolished)
- 2 Stainless steel single chamber (precision casting)
- 3 Stainless steel double chamber housing (precision casting)

Stainless steel housing with protection rating IP 66/IP 68 (1 bar)

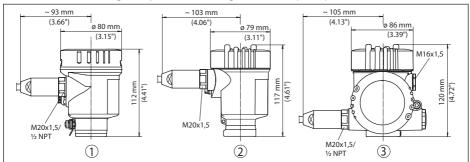


Fig. 60: Housing version with protection rating IP 66/IP 68 (1 bar), (with integrated display and adjustment module the housing is 18 mm/0.71 in higher)

- 1 Stainless steel single chamber (electropolished)
- 2 Stainless steel single chamber (precision casting)
- 3 Stainless steel double chamber housing (precision casting)

VEGAPULS 67, version with mounting strap

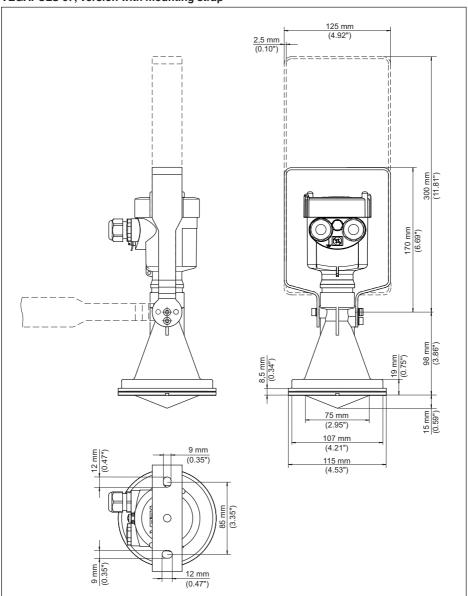


Fig. 61: VEGAPULS 67, mounting strap in 170 or 300 mm length

VEGAPULS 67, version with compression flange

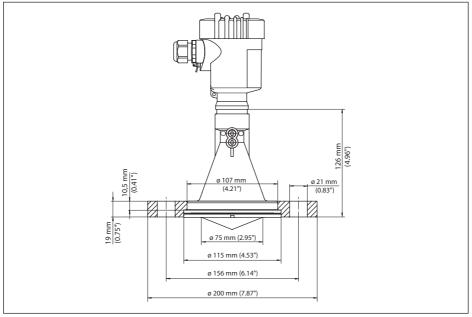


Fig. 62: VEGAPULS 67, compression flange suitable for DN 80 PN 16, ASME 3" 150lbs, JIS80 10K

VEGAPULS 67, version with compression flange and rinsing connection

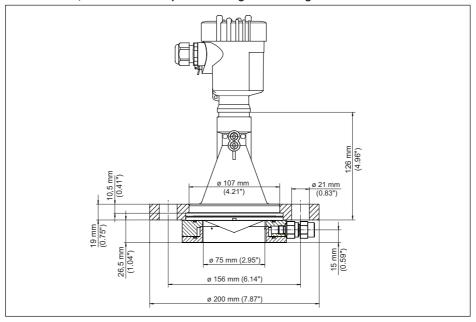


Fig. 63: VEGAPULS 67, compression flange with rinsing connection suitable for DN 80 PN 16, ASME 3" 150lbs, JIS80 10K

VEGAPULS 67, version with adapter flange

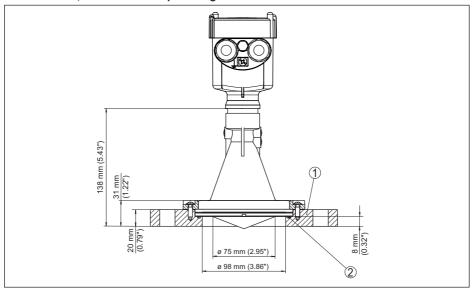


Fig. 64: VEGAPULS 67, adapter flange

- 1 Adapter flange
- 2 Seal

VEGAPULS 67, version with adapter flange and rinsing connection

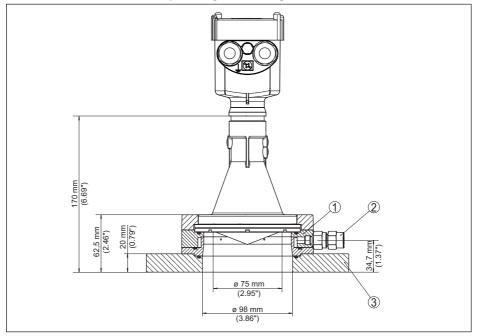


Fig. 65: VEGAPULS 67, adapter flange and air rinsing

- 1 Rinsing connection
- 2 Reflux valve
- 3 Adapter flange

11.4 Industrial property rights

VEGA product lines are global protected by industrial property rights. Further information see www.vega.com.

VEGA Produktfamilien sind weltweit geschützt durch gewerbliche Schutzrechte.

Nähere Informationen unter www.vega.com.

Les lignes de produits VEGA sont globalement protégées par des droits de propriété intellectuelle. Pour plus d'informations, on pourra se référer au site www.vega.com.

VEGA lineas de productos están protegidas por los derechos en el campo de la propiedad industrial. Para mayor información revise la pagina web www.vega.com.

Линии продукции фирмы ВЕГА защищаются по всему миру правами на интеллектуальную собственность. Дальнейшую информацию смотрите на сайте <u>www.vega.com</u>.

VEGA系列产品在全球享有知识产权保护。

进一步信息请参见网站<www.vega.com。

11.5 Trademark

All the brands as well as trade and company names used are property of their lawful proprietor/originator.

INDEX

Α

Adjustment 43 - System 37 Agitator 23

C

Channel 44 Copy instrument settings 53 Cyclical data traffic 75

D

Damping 45
Data format, output signal 77
Date/Time 51
Deviation 62
Displayed value 46

E

Echo curve 48
EDD (Enhanced Device Description) 57
Electrical connection 28
Electronics temperature 46
Error codes 61
Event memory 58

F

False signal suppression 49 Fault rectification 62

Н

Hardware addressing 33

ı

Instrument address 33 Instrument master file 75 Instrument units 48 Instrument version 53

L

Language 45 Linearisation curve 50 Lock adjustment 45

M

Main menu 38
Measured value memory 58
Measurement loop name 39
Measurement reliability 47
Mounting socket 19

N

NAMUR NE 107 59, 61 - Failure 60

0

Overfill protection according to WHG 50

Р

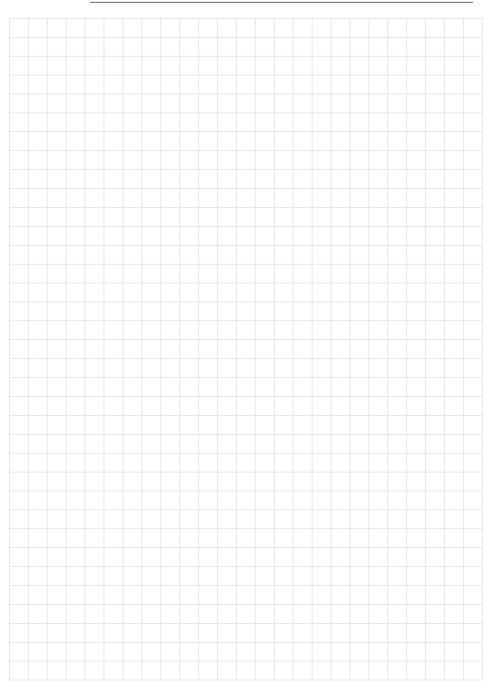
PA modules 76 Peak value indicator 46 PIN 51 Profibus Ident Number 54

R

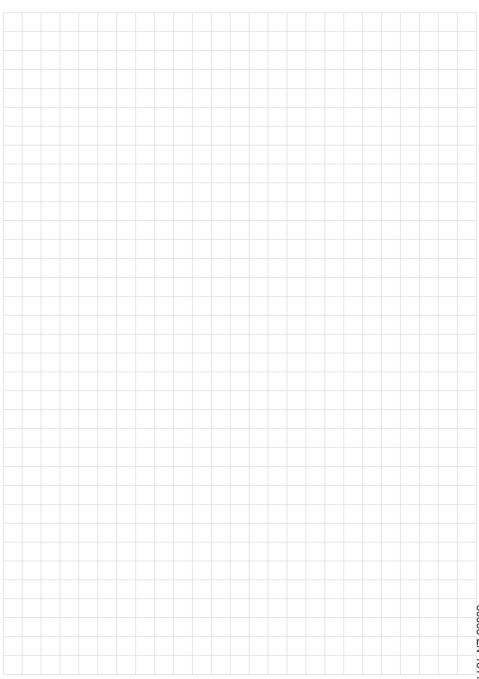
Reflection properties, medium 39 Repair 66 Replacement parts 13

S

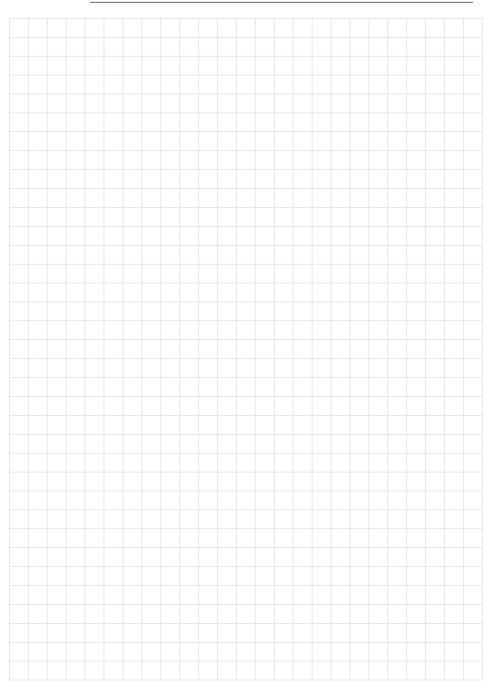
Scaling 44
Sensor address 50
Sensor status 46
Service hotline 64
Simulation 47
Software addressing 34
Status bytes PA output value 78
Subsurface enclosure 24


Т

Telegram configuration 77


V

Vessel form 41 Vessel height 42 Vessel installations 23



36533-EN-181127

Printing date:

All statements concerning scope of delivery, application, practical use and operating conditions of the sensors and processing systems correspond to the information available at the time of printing. ϵ

Subject to change without prior notice

© VEGA Grieshaber KG, Schiltach/Germany 2018

36533-EN-181127