Operating Instructions

TDR sensor for continuous level measurement of bulk solids

VEGAFLEX 82

Four-wire 4 ... 20 mA/HART Rod and cable probe

Document ID: 41830

Contents

1	t this document	4			
	1.1	Function			
	1.2	Target group			
	1.3	Symbols used			
2	2 For your safety				
	2.1	Authorised personnel	5		
	2.2	Appropriate use			
	2.3	Warning about incorrect use			
	2.4	General safety instructions			
	2.5	EU conformity			
	2.6	NAMUR recommendations			
	2.7 2.8	Environmental instructions			
3	Prod	uct description			
	3.1	Configuration			
	3.2	Principle of operation			
	3.3	Packaging, transport and storage			
	3.4	Accessories	9		
4	Mour	nting	12		
	4.1	General instructions	12		
	4.2	Mounting instructions	13		
5	Conn	ecting to power supply	18		
•	5.1	Preparing the connection			
	5.2	Connecting	19		
	5.3	Wiring plan, double chamber housing			
	5.4	Double chamber housing with VEGADIS-Adapter	22		
	5.5	Switch-on phase	23		
6	Setu	p with the display and adjustment module	24		
·	6.1	Insert display and adjustment module	24		
	6.2	Adjustment system			
	6.3	Parameter adjustment - Quick setup	26		
	6.4	Parameter adjustment - Extended adjustment			
	6.5	Saving the parameterisation data	42		
7	Setu	o with PACTware	43		
•	7.1	Connect the PC			
	7.2	Parameter adjustment with PACTware			
	7.3	Set up with the quick setup.			
	7.4	Saving the parameterisation data			
8	Setu	p with other systems	17		
0	8.1	DD adjustment programs			
	8.2	Field Communicator 375, 475			
_		nostics and servicing			
9	_	· · · · · · · · · · · · · · · · · · ·			
	9.1 9.2	Maintenance Diagnosis memory			
	9.2	Status messages			
	5.5	Cidido mocodyes	TÜ		

9.4	Rectify faults	52	
9.5	Exchanging the electronics module	55	
9.6	Exchange or shorten cable/rod	56	
9.7			
9.8			
Dism	ount	59	
10.1	Dismounting steps	59	
10.2	Disposal	59	
11 Supplement			
11.1	Technical data	60	
11.3	Industrial property rights	75	
	9.6 9.7 9.8 Dism 10.1 10.2 Supp 11.1 11.2 11.3	9.5 Exchanging the electronics module	

$\langle x \rangle$

Safety instructions for Ex areas

Take note of the Ex specific safety instructions for Ex applications. These instructions are attached as documents to each instrument with Ex approval and are part of the operating instructions.

Editing status: 2021-08-19

1 About this document

1.1 Function

This instruction provides all the information you need for mounting, connection and setup as well as important instructions for maintenance, fault rectification, the exchange of parts and the safety of the user. Please read this information before putting the instrument into operation and keep this manual accessible in the immediate vicinity of the device.

1.2 Target group

This operating instructions manual is directed to trained personnel. The contents of this manual must be made available to the qualified personnel and implemented.

1.3 Symbols used

Document ID

This symbol on the front page of this instruction refers to the Document ID. By entering the Document ID on www.vega.com you will reach the document download.

Information, note, tip: This symbol indicates helpful additional information and tips for successful work.

Note: This symbol indicates notes to prevent failures, malfunctions, damage to devices or plants.

Caution: Non-observance of the information marked with this symbol may result in personal injury.

Warning: Non-observance of the information marked with this symbol may result in serious or fatal personal injury.

Danger: Non-observance of the information marked with this symbol results in serious or fatal personal injury.

Ex applications

This symbol indicates special instructions for Ex applications.

Lis

The dot set in front indicates a list with no implied sequence.

1 Sequence of actions

Numbers set in front indicate successive steps in a procedure.

Battery disposal

This symbol indicates special information about the disposal of batteries and accumulators.

2 For your safety

2.1 Authorised personnel

All operations described in this documentation must be carried out only by trained, qualified personnel authorised by the plant operator.

During work on and with the device, the required personal protective equipment must always be worn.

2.2 Appropriate use

VEGAFLEX 82 is a sensor for continuous level measurement.

You can find detailed information about the area of application in chapter "Product description".

Operational reliability is ensured only if the instrument is properly used according to the specifications in the operating instructions manual as well as possible supplementary instructions.

2.3 Warning about incorrect use

Inappropriate or incorrect use of this product can give rise to application-specific hazards, e.g. vessel overfill through incorrect mounting or adjustment. Damage to property and persons or environmental contamination can result. Also, the protective characteristics of the instrument can be impaired.

2.4 General safety instructions

This is a state-of-the-art instrument complying with all prevailing regulations and directives. The instrument must only be operated in a technically flawless and reliable condition. The operator is responsible for the trouble-free operation of the instrument. When measuring aggressive or corrosive media that can cause a dangerous situation if the instrument malfunctions, the operator has to implement suitable measures to make sure the instrument is functioning properly.

The safety instructions in this operating instructions manual, the national installation standards as well as the valid safety regulations and accident prevention rules must be observed by the user.

For safety and warranty reasons, any invasive work on the device beyond that described in the operating instructions manual may be carried out only by personnel authorised by the manufacturer. Arbitrary conversions or modifications are explicitly forbidden. For safety reasons, only the accessory specified by the manufacturer must be used.

To avoid any danger, the safety approval markings and safety tips on the device must also be observed.

2.5 EU conformity

The device fulfils the legal requirements of the applicable EU directives. By affixing the CE marking, we confirm the conformity of the instrument with these directives.

The EU conformity declaration can be found on our homepage.

Electromagnetic compatibility

Instruments in four-wire or Ex-d-ia version are designed for use in an industrial environment. Nevertheless, electromagnetic interference from electrical conductors and radiated emissions must be taken into account, as is usual with class A instruments according to EN 61326-1. If the instrument is used in a different environment, the electromagnetic compatibility to other instruments must be ensured by suitable measures.

2.6 NAMUR recommendations

NAMUR is the automation technology user association in the process industry in Germany. The published NAMUR recommendations are accepted as the standard in field instrumentation.

The device fulfils the requirements of the following NAMUR recommendations:

- NE 21 Electromagnetic compatibility of equipment
- NE 43 Signal level for fault information from measuring transducers
- NE 53 Compatibility of field devices and display/adjustment components
- NE 107 Self-monitoring and diagnosis of field devices

For further information see www.namur.de.

2.7 Installation and operation in the USA and Canada

This information is only valid for USA and Canada. Hence the following text is only available in the English language.

Installations in the US shall comply with the relevant requirements of the National Electrical Code (ANSI/NFPA 70).

Installations in Canada shall comply with the relevant requirements of the Canadian Electrical Code.

2.8 Environmental instructions

Protection of the environment is one of our most important duties. That is why we have introduced an environment management system with the goal of continuously improving company environmental protection. The environment management system is certified according to DIN EN ISO 14001.

Please help us fulfil this obligation by observing the environmental instructions in this manual:

- Chapter "Packaging, transport and storage"
- Chapter "Disposal"

3 Product description

3.1 Configuration

Scope of delivery

The scope of delivery encompasses:

- Sensor VEGAFLEX 82
- Optional accessory
- Optionally integrated Bluetooth module

The further scope of delivery encompasses:

- Documentation
 - Quick setup guide VEGAFLEX 82
 - Instructions for optional instrument features
 - Ex-specific "Safety instructions" (with Ex versions)
 - If necessary, further certificates

Information:

Optional instrument features are also described in this operating instructions manual. The respective scope of delivery results from the order specification.

Scope of this operating instructions

This operating instructions manual applies to the following instrument versions:

- Hardware from 1.0.0
- Software from 1.3.0
- Only for instrument versions without SIL qualification

Type label

The type label contains the most important data for identification and use of the instrument:

Fig. 1: Layout of the type label (example)

- 1 Instrument type
- 2 Product code
- 3 Approvals
- 4 Power supply and signal output, electronics
- 5 Protection rating
- 6 Probe length (measurement accuracy optional)
- 7 Process and ambient temperature, process pressure
- 8 Material wetted parts
- 9 Order number
- 10 Serial number of the instrument
- 11 Symbol of the device protection class
- 12 ID numbers, instrument documentation
- 13 Reminder to observe the instrument documentation
- 14 Notified authority for CE marking
- 15 Approval directives

Serial number - Instrument search

The type label contains the serial number of the instrument. With it you can find the following instrument data on our homepage:

- Product code (HTML)
- Delivery date (HTML)
- Order-specific instrument features (HTML)
- Operating instructions and quick setup guide at the time of shipment (PDF)
- Order-specific sensor data for an electronics exchange (XML)
- Test certificate (PDF) optional

Move to "www.vega.com" and enter in the search field the serial number of your instrument.

Alternatively, you can access the data via your smartphone:

- Download the VEGA Tools app from the "Apple App Store" or the "Google Play Store"
- Scan the QR-code on the type label of the device or
- Enter the serial number manually in the app

3.2 Principle of operation

Application area

The VEGAFLEX 82 is a level sensor with cable or rod probe for continuous level measurement, suitable for applications in bulk solids.

Functional principle - level measurement

High frequency microwave pulses are guided along a steel cable or a rod. Upon reaching the medium surface, the microwave pulses are reflected. The running time is evaluated by the instrument and output as level.

3.3 Packaging, transport and storage

Packaging

Your instrument was protected by packaging during transport. Its capacity to handle normal loads during transport is assured by a test based on ISO 4180.

The packaging consists of environment-friendly, recyclable cardboard. For special versions, PE foam or PE foil is also used. Dispose of the packaging material via specialised recycling companies.

Transport

Transport must be carried out in due consideration of the notes on the transport packaging. Nonobservance of these instructions can cause damage to the device.

Transport inspection

The delivery must be checked for completeness and possible transit damage immediately at receipt. Ascertained transit damage or concealed defects must be appropriately dealt with.

Storage

Up to the time of installation, the packages must be left closed and stored according to the orientation and storage markings on the outside.

Unless otherwise indicated, the packages must be stored only under the following conditions:

- Not in the open
- Dry and dust free
- Not exposed to corrosive media
- Protected against solar radiation
- Avoiding mechanical shock and vibration

Storage and transport temperature

- Storage and transport temperature see chapter "Supplement -Technical data - Ambient conditions"
- Relative humidity 20 ... 85 %

Lifting and carrying

With instrument weights of more than 18 kg (39.68 lbs) suitable and approved equipment must be used for lifting and carrying.

3.4 Accessories

The instructions for the listed accessories can be found in the download area on our homepage.

PLICSCOM

The display and adjustment module is used for measured value indication, adjustment and diagnosis.

The integrated Bluetooth module (optional) enables wireless adjustment via standard adjustment devices.

VEGACONNECT The interface adapter VEGACONNECT enables the connection of communication-capable instruments to the USB interface of a PC.

VEGADIS 81 The VEGADIS 81 is an external display and adjustment unit for VEGA

plics® sensors.

VEGADIS adapter The VEGADIS adapter is an accessory part for sensors with double chamber housings. It enables the connection of VEGADIS 81 to the

sensor housing via an M12 x 1 plug.

VEGADIS 82 VEGADIS 82 is suitable for measured value indication and adjustment

of sensors with HART protocol. It is looped into the 4 ... 20 mA/HART

signal cable.

PLICSMOBILE T81 The PLICSMOBILE T81 is an external GSM/GPRS/UMTS radio unit

for transmission of measured values and for remote parameter adjust-

ment of HART sensors.

Protective cover The protective cover protects the sensor housing against soiling and

intense heat from solar radiation.

Flanges Screwed flanges are available in different versions according to the

following standards: DIN 2501, EN 1092-1, BS 10, ASME B 16.5.

JIS B 2210-1984, GOST 12821-80.

Display and adjustment The display and adjustment module can be optionally replaced by a module with heating

display and adjustment module with heating function.

You can use this display and adjustment module in an ambient tem-

perature range of -40 ... +70 °C.

External housing If the standard sensor housing is too big or in case of strong vibra-

tions, an external housing can be used.

Then the sensor housing is made of stainless steel. The electronics is located in the external housing which can be mounted in a distance of

up to 10 m (32.8 ft) to the sensor by using a connection cable.

Rod components If you are using an instrument with rod version, you can extend the

rod probe individually with curved segments and rod and cable exten-

sions of different lengths.

All extensions used must not exceed a total length of 6 m (19.7 ft).

The extensions are available in the following lengths:

Rod: Ø 16 mm (0.63 in)

Basic segments: 20 ... 5900 mm (0.79 ... 232 in)

Rod/cable segments: 20 ... 5900 mm (0.79 ... 232 in)

Curved segments: 100 x 100 mm (3.94 ... 3.94 in)

Centering

If you mount the VEGAFLEX 82 in a bypass tube or standpipe, you have to avoid contact to the bypass tube by using a spacer at the probe end.

4 Mounting

4.1 General instructions

Screwing in

Devices with threaded fitting are screwed into the process fitting with a suitable wrench via the hexagon.

See chapter "Dimensions" for wrench size.

Warning:

The housing or the electrical connection may not be used for screwing in! Depending on the device version, tightening can cause damage, e. g. to the rotation mechanism of the housing.

Protection against moisture

Protect your instrument against moisture ingress through the following measures:

- Use a suitable connection cable (see chapter "Connecting to power supply")
- Tighten the cable gland or plug connector
- Lead the connection cable downward in front of the cable entry or plug connector

This applies mainly to outdoor installations, in areas where high humidity is expected (e.g. through cleaning processes) and on cooled or heated vessels.

Note:

Make sure that during installation or maintenance no moisture or dirt can get inside the instrument.

To maintain the housing protection, make sure that the housing lid is closed during operation and locked, if necessary.

Cable glands

Metric threads

In the case of instrument housings with metric thread, the cable glands are screwed in at the factory. They are sealed with plastic plugs as transport protection.

You have to remove these plugs before electrical connection.

NPT thread

In the case of instrument housings with self-sealing NPT threads, it is not possible to have the cable entries screwed in at the factory. The free openings for the cable glands are therefore covered with red dust protection caps as transport protection. The dust protection caps do not provide sufficient protection against moisture.

Prior to setup you have to replace these protective caps with approved cable glands or close the openings with suitable blind plugs.

Process conditions

Note:

For safety reasons, the instrument must only be operated within the permissible process conditions. You can find detailed information on the process conditions in chapter "Technical data" of the operating instructions or on the type label.

Hence make sure before mounting that all parts of the instrument exposed to the process are suitable for the existing process conditions.

These are mainly:

- Active measuring component
- Process fitting
- Process seal

Process conditions in particular are:

- Process pressure
- Process temperature
- Chemical properties of the medium
- Abrasion and mechanical influences

4.2 Mounting instructions

Installation position

Mount the device in such a way that the distance to vessel installations or to the vessel wall is at least 300 mm (12 in). In non-metallic vessels, the distance to the vessel wall should be at least 500 mm (19.7 in).

During operation, the probe must not touch any installations or the vessel wall. If necessary, fasten the probe end.

In vessels with conical bottom it can be advantageous to mount the device in the center of the vessel, as measurement is then possible nearly down to the lowest point of the bottom. Keep in mind that measurement all the way down to the tip of the probe may not be possible. The exact value of the min. distance (lower blocking distance) is stated in chapter "Technical data" of the operating instructions.

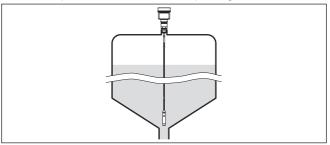


Fig. 2: Vessel with conical bottom

Type of vessel

Plastic vessel/Glass vessel

The guided microwave principle requires a metallic surface on the process fitting. Therefore, in plastic vessels, etc., use an instrument version with flange (from DN 50) or place a metal sheet (\emptyset > 200 mm/8 in) beneath the process fitting when screwing it in.

Make sure that the plate has direct contact with the process fitting.

When using the probes without metal vessel wall, e.g. in plastic vessels, the measured value can be influenced by strong electromagnetic fields (emitted interference according to EN 61326: class A).

Use a probe in coax version for applications in liquids.

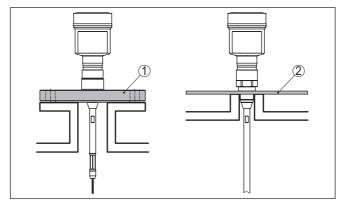


Fig. 3: Mounting in non-metallic vessel

- 1 Flange
- 2 Metal sheet

Concrete vessel

When mounting in thick concrete ceilings, VEGAFLEX 82 should be mounted front flush to the lower edge. In concrete silos, the distance to the wall should be at least 500 mm (20 in).

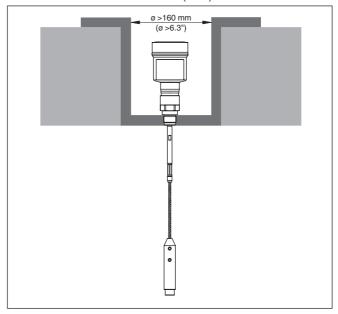


Fig. 4: Mounting in concrete silo

Nozzle

If possible, avoid nozzles. Mount the sensor flush with the vessel top. If this is not possible, use short nozzles with small diameter.

Higher nozzles or nozzles with a bigger diameter can generally be used. They can, however, increase the upper blocking distance. Check if this is relevant for your measurement.

In such cases, always carry out a false signal suppression after mounting. You can find further information under "Setup procedure".

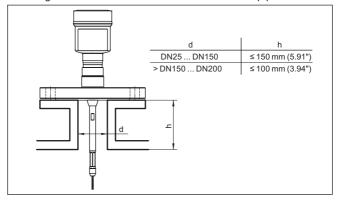


Fig. 5: Mounting socket

When welding the nozzle, make sure that the nozzle is flush with the vessel top.

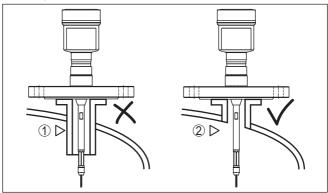


Fig. 6: Nozzle must be installed flush

- 1 Unfavourable mounting
- 2 Nozzle flush optimum mounting

Welding work

Before beginning the welding work, remove the electronics module from the sensor. By doing this, you avoid damage to the electronics through inductive coupling.

Inflowing medium

Do not mount the instruments in or above the filling stream. Make sure that you detect the medium surface, not the inflowing product.

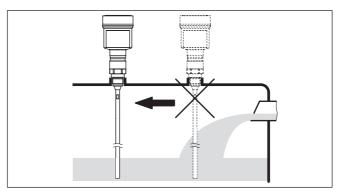


Fig. 7: Mounting of the sensor with inflowing medium

Measuring range

The reference plane for the measuring range of the sensors is the sealing surface of the thread or flange.

Keep in mind that a min. distance must be maintained below the reference plane and possibly also at the end of the probe - measurement in these areas is not possible (blocking distance). The length of the cable can be used all the way to the end only when measuring conductive products. These blocking distances for different mediums are listed in chapter "*Technical data*". Keep in mind for the adjustment that the default setting for the measuring range refers to water.

Pressure

The process fitting must be sealed if there is gauge or low pressure in the vessel. Before use, check if the sealing material is resistant against the measured product and the process temperature.

The max. permissible pressure is specified in chapter "*Technical data*" or on the type label of the sensor.

Fasten

If there is a risk of the cable probe touching the vessel wall during operation due to product movements or agitators, etc., the measuring probe should be securely fixed.

In the gravity weight there is an internal thread (M12), e.g. for an eyebolt (optional) - (article no. 2.27423).

Make sure that the probe cable is not completely taut. Avoid tensile loads on the cable.

Avoid undefined vessel connections, i.e. the connection must be either grounded reliably or isolated reliably. Any undefined change of this condition can lead to measurement errors.

If there is a danger of the rod probe touching the vessel wall, fasten the probe at the bottom end.

Keep in mind that measurement is not possible below the fastening point.

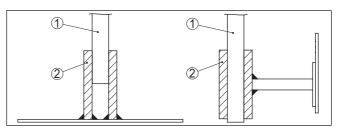


Fig. 8: Fasten the probe

- 1 Measuring probe
- 2 Retaining sleeve

Lateral installation

In case of difficult installation conditions in liquid applications, the probe can be also mounted laterally. For this purpose, adapt the rod with rod extensions or bow-shaped segments.

To compensate for the resulting changes in signal runtime, let the instrument determine the probe length automatically.

The determined probe length can deviate from the actual probe length when using curved or angled segments.

If internal installations such as struts, ladders, etc. are present on the vessel wall, the measuring probe should be mounted at least 300 mm (11.81 in) away from the vessel wall.

You can find further information in the supplementary instructions of the rod extension.

Rod extension

In case of difficult installation conditions, for example in a nozzle, the probe can be suitably adapted with a rod extension.

To compensate for the resulting changes in signal runtime, let the instrument determine the probe length automatically.

You can find further information in the supplementary instructions of the rod and cable components.

5 Connecting to power supply

5.1 Preparing the connection

Safety instructions

Always keep in mind the following safety instructions:

- The electrical connection must only be carried out by trained, qualified personnel authorised by the plant operator.
- If overvoltage surges are expected, overvoltage arresters should be installed.

Warning:

Only connect or disconnect in de-energized state.

Voltage supply via mains voltage

In this case, the instrument is designed in protection class I. To maintain this protection class, it is absolutely necessary that the ground conductor be connected to the internal ground terminal. Take note of the national installation regulations.

Supply voltage and current output are carried on separate connection cables if reliable separation is required. The supply voltage range can differ depending on the instrument version.

The data for power supply are specified in chapter "Technical data".

Note:

Install a disconnecting device for the instrument which is easy to access. The disconnecting device must be marked for the instrument (IEC/EN 61010).

Voltage supply via low voltage

In this case, the instrument is designed in protection class II. Generally connect the instrument to vessel ground (potential equalization) or with plastic vessels to the next ground potential. For this purpose, a ground terminal is located laterally on the instrument housing.

Connection cable

An approved, three-wire installation cable with PE conductor is required for voltage supply with mains voltage.

The 4 ... 20 mA current output is connected with standard two-wire cable without shielding. If electromagnetic interference is expected which is above the test values of EN 61326-1 for industrial areas, shielded cable should be used.

Use cable with round cross section for instruments with housing and cable gland. Use a cable gland suitable for the cable diameter to ensure the seal effect of the cable gland (IP protection rating).

Cable glands

Metric threads

In the case of instrument housings with metric thread, the cable glands are screwed in at the factory. They are sealed with plastic plugs as transport protection.

Note:

You have to remove these plugs before electrical connection.

NPT thread

In the case of instrument housings with self-sealing NPT threads, it is not possible to have the cable entries screwed in at the factory. The free openings for the cable glands are therefore covered with red dust protection caps as transport protection.

Note

Prior to setup you have to replace these protective caps with approved cable glands or close the openings with suitable blind plugs.

On plastic housings, the NPT cable gland or the Conduit steel tube must be screwed into the threaded insert without grease.

Max. torque for all housings, see chapter "Technical data".

Cable screening and grounding

If shielded cable is required, we recommend connecting the cable screening on both ends to ground potential. In the sensor, the cable screening must be connected directly to the internal ground terminal. The ground terminal on the outside of the housing must be connected to the ground potential (low impedance).

In Ex systems, the grounding is carried out according to the installation regulations.

In electroplating plants as well as plants for cathodic corrosion protection it must be taken into account that significant potential differences exist. This can lead to unacceptably high currents in the cable screen if it is grounded at both ends.

Note:

The metallic parts of the instrument (process fitting, sensor, concentric tube, etc.) are connected with the internal and external ground terminal on the housing. This connection exists either directly via the conductive metallic parts or, in case of instruments with external electronics, via the screen of the special connection cable.

You can find specifications on the potential connections inside the instrument in chapter "*Technical data*".

5.2 Connecting

Connection technology

The voltage supply and signal output are connected via the springloaded terminals in the housing.

Connection to the display and adjustment module or to the interface adapter is carried out via contact pins in the housing.

Information:

The terminal block is pluggable and can be removed from the electronics. To do this, lift the terminal block with a small screwdriver and pull it out. When reinserting the terminal block, you should hear it snap in.

Connection procedure

Proceed as follows:

- 1. Unscrew the housing lid
- Loosen compression nut of the cable gland and remove blind plug

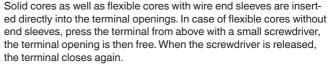

- Remove approx. 10 cm (4 in) of the cable mantle (signal output), strip approx. 1 cm (0.4 in) insulation from the ends of the individual wires
- 4. Insert the cable into the sensor through the cable entry

Fig. 9: Connection steps 5 and 6

5. Insert the wire ends into the terminals according to the wiring plan

Information:

- Check the hold of the wires in the terminals by lightly pulling on them
- Connect the cable screening to the internal ground terminal, connect the outer ground terminal to potential equalisation in case of power supply via low voltage
- Connect the lead cable for voltage supply in the same way according to the wiring plan, in addition connect the ground conductor to the inner ground terminal when powered with mains voltage.
- 9. Tighten the compression nut of the cable entry gland. The seal ring must completely encircle the cable
- 10. Screw the housing lid back on

The electrical connection is finished.

Information:

The terminal blocks are pluggable and can be removed from the housing insert. To do this, lift the terminal block with a small screwdriver and pull it out. When inserting the terminal block again, you should hear it snap in.

5.3 Wiring plan, double chamber housing

The following illustrations apply to the non-Ex as well as to the Ex-d-ia version.

Electronics compartment

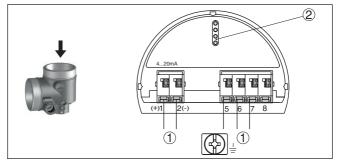


Fig. 10: Electronics compartment - double chamber housing

- 1 Internal connection to the connection compartment
- 2 For display and adjustment module or interface adapter

Information:

The connection of an external display and adjustment unit is not possible with the Ex-d-ia version.

Connection compartment with mains voltage

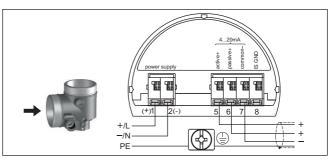


Fig. 11: Connection compartment with double chamber housing with mains voltage

Terminal	Function	Polarity
1	Voltage supply	+/L
2	Voltage supply	-/N
5	4 20 mA output (active)	+
6	4 20 mA output (passive)	+
7	Mass - output	-
8	Function ground when installing according to CSA (Canadian Standards Association)	

Connection compartment with low voltage

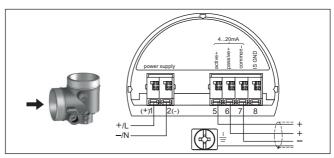


Fig. 12: Connection compartment with double chamber housing with low voltage

Terminal	Function	Polarity
1	Voltage supply	+/L
2	Voltage supply	-/N
5	4 20 mA output (active)	+
6	4 20 mA output (passive)	+
7	Mass - output	-
8	Function ground when installing according to CSA (Canadian Standards Association)	

5.4 Double chamber housing with VEGADIS-Adapter

Electronics compartment

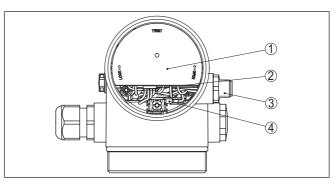


Fig. 13: View to the electronics compartment with VEGADIS adapter for connection of the external display and adjustment unit

- 1 VEGADIS adapter
- 2 Internal plug connection
- 3 M12 x 1 plug connector

Assignment of the plug connector

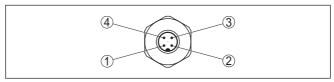


Fig. 14: Top view of the M12 x 1 plug connector

- 1 Pin 1
- 2 Pin 2
- 3 Pin 3
- 4 Pin 4

Contact pin	Colour, connection ca- ble in the sensor	Terminal, electronics module
Pin 1	Brown	5
Pin 2	White	6
Pin 3	Blue	7
Pin 4	Black	8

5.5 Switch-on phase

After connection of the device to power supply, the device first carries out a self-test:

- Internal check of the electronics
- Indication of the status message "F 105 Determine measured value" on the display or PC
- The output signal jumps briefly to the set fault current

Then the actual measured value is output to the signal cable. The value takes into account settings that have already been carried out, e.g. default setting.

6 Set up with the display and adjustment module

6.1 Insert display and adjustment module

The display and adjustment module can be inserted into the sensor and removed again at any time. You can choose any one of four different positions - each displaced by 90°. It is not necessary to interrupt the power supply.

Proceed as follows:

- 1. Unscrew the housing lid
- Place the display and adjustment module on the electronics in the desired position and turn it to the right until it snaps in.
- 3. Screw housing lid with inspection window tightly back on

Disassembly is carried out in reverse order.

The display and adjustment module is powered by the sensor, an additional connection is not necessary.

Fig. 15: Installing the display and adjustment module in the double chamber housing

Note:

If you intend to retrofit the instrument with a display and adjustment module for continuous measured value indication, a higher lid with an inspection glass is required.

6.2 Adjustment system

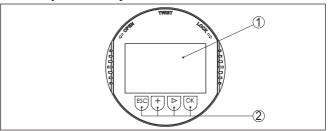


Fig. 16: Display and adjustment elements

- 1 LC display
- 2 Adjustment keys

Kev functions

[OK] key:

- Move to the menu overview
- Confirm selected menu
- Edit parameter
- Save value

[->] key:

- Change measured value presentation
- Select list entry
- Select editing position

[+] key:

Change value of the parameter

[ESC] key:

- Interrupt input
- Jump to next higher menu

Adjustment system

The sensor is operated via the four keys of the display and adjustment module. The individual menu items are shown on the LC display. You can find the function of the individual keys in the previous illustration.

When the [+] and [->] keys are pressed quickly, the edited value, or the cursor, changes one value or position at a time. If the key is pressed longer than 1 s, the value or position changes continuously.

When the *[OK]* and *[ESC]* keys are pressed simultaneously for more than 5 s, the display returns to the main menu. The menu language is then switched over to "*English*".

Approx. 60 minutes after the last pressing of a key, an automatic reset to measured value indication is triggered. Any values not confirmed with *[OK]* will not be saved.

Switch-on phase

After switching on, the VEGAFLEX 82 carries out a short self-test where the device software is checked.

The output signal transmits a fault signal during the switch-on phase. The following information is displayed on the display and adjustment module during the startup procedure:

Instrument type

- Device name
- Software version (SW-Ver)
- Hardware version (HW-Ver)

Measured value indication

With the [->] key you can move between three different indication modes.

In the first view, the selected measured value is displayed in large digits.

In the second view, the selected measured value and a respective bargraph presentation are displayed.

In the third view, the selected measured value as well as a second selectable value, e.g. the temperature, are displayed.

Quick setup

6.3 Parameter adjustment - Quick setup

To quickly and easily adapt the sensor to the application, select the menu item "Quick setup" in the start graphic on the display and adjustment module.

The following steps for the quick setup can be reached also in the "Extended adjustment".

- Instrument address
- Measurement loop name
- Medium type (optional)
- Application
- Max. adjustment
- Min. adjustment
- False signal suppression

You can find the description of the individual menu items in the following chapter "Parameter adjustment - Extended adjustment".

6.4 Parameter adjustment - Extended adjustment

For technically demanding measuring points, you can carry out extended settings in "Extended adjustment".

Main menu

The main menu is divided into five sections with the following functions:

Setup: Settings, e.g. measurement loop name, medium, vessel, adjustment, signal output, device unit, false signal suppression, linearization curve

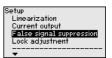
Display: Settings, e.g., for language, measured value display, lighting

Diagnosis: Information, e.g. on instrument status, pointer, measurement reliability, simulation, echo curve

Additional adjustments: Reset, date/time, reset, copy function

Info: Instrument name, hardware and software version, date of manufacture, instrument features

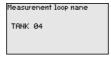
Note:


For optimum setting of the measuring point, the individual submenu items in the main menu item "Setup" should be selected one after the other and provided with the correct parameters. If possible, go through the items in the given sequence.

The procedure is described below.

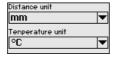
The following submenu points are available:

The submenu points are described below.


6.4.1 Setup

Measurement loop name

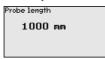
Here you can assign a suitable measurement loop name. Push the "*OK*" key to start the editing. With the "+" key you change the sign and with the "->" key you jump to the next position.

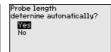

You can enter names with max. 19 characters. The character set comprises:

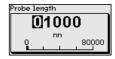
- Capital letters from A ... Z
- Numbers from 0 ... 9
- Special characters + / blanks

Units

In this menu item you select the distance unit and the temperature unit.

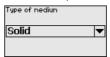



For the distance units you can choose between m, mm and ft and for the temperature units °C, °F and K.


Probe length

In this menu item you can enter the probe length or have the length determined automatically by the sensor system.

When choosing "Yes", then the probe length will be determined automatically. When choosing "No", you can enter the probe length manually.



Application - Medium type

In this menu item you can select which type of medium you want to measure. You can choose between liquid or bulk solid.

Application

In this menu item you can select the application. You can choose between metallic or non-metallic vessels.

Note:

The selection of the application has a considerable influence on all other menu items. Keep in mind that as you continue with the parameter adjustment, individual menu items are only optionally available.

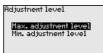
You have the option of choosing the demonstration mode. This mode is only suitable for test and demonstration purposes. In this mode, the sensor ignores the parameters of the application and reacts immediately to any change.


Medium, dielectric constant

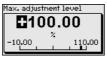
In this menu item, you can define the type of medium (product).

This menu item is only available if you have selected level measurement under the menu item "Application".

You can choose between the following medium types:

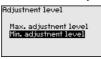

Dielectric con- stant	Medium type	Examples	
> 3	Cereals, flour	All kind of cereals, wheat flour	
1.5 3	Granules, cement	Lime, gypsum, cement	

Dielectric con- stant	Medium type	Examples
< 1.5	Dusts, wood chips	Wood chips, sawdust


Max. adjustment level

In this menu item, you can enter the max. adjustment for the level.

Adjust the requested percentage value with [+] and store with [OK].



Enter the appropriate distance value in m (corresponding to the percentage value) for the full vessel. The distance refers to the sensor reference plane (seal surface of the process fitting). Keep in mind that the max. level must lie below the blocking distance.


Min. adjustment level

In this menu item, you can enter the min. adjustment for the level.

Adjust the requested percentage value with [+] and store with [OK].

Enter the suitable distance value in m for the empty vessel (e.g. distance from the flange to the probe end) corresponding to the percentage value. The distance refers to the sensor reference plane (seal surface of the process fitting).

Damping

To damp process-dependent measured value fluctuations, set an integration time of 0 ... 999 s in this menu item.

The default setting is a damping of 0 s.

Linearisation

A linearisation is necessary for all vessels in which the vessel volume does not increase linearly with the level - e.g. a horizontal cylindrical or spherical tank, when the indication or output of the volume is required. Corresponding linearisation curves are preprogrammed for these vessels. They represent the correlation between the level percentage and vessel volume.

The linearisation applies to the measured value indication and the output. By activating the appropriate curve, the volume percentage of the vessel is displayed correctly. If the volume should not be displayed in percent but e.g. in I or kg, a scaling can be also set in the menu item "Display".

Warning:

If a linearisation curve is selected, the measuring signal is no longer necessarily linear to the filling height. This must be considered by the user especially when setting the switching point on the limit signal transmitter.

In the following, you have to enter the values for your vessel, for example the vessel height and the socket correction.

For non-linear vessel forms, enter the vessel height and the socket correction.

For the vessel height, you have to enter the total height of the vessel.

For the nozzle correction you have to enter the height of the nozzle above the upper edge of the vessel. If the nozzle is lower than the upper edge of the vessel, this value can also be negative.

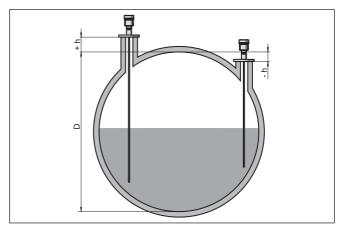
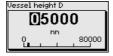
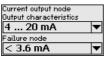



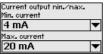
Fig. 17: Vessel height and socket correction value

- D Vessel height
- +h Positive socket correction value
- -h Negative socket correction value



Current output mode

In the menu item "Current output mode" you determine the output characteristics and reaction of the current output in case of fault.



The default setting is output characteristics 4 ... 20 mA, fault mode < 3.6 mA.

Current output, min./max. In the menu item "Current output Min./Max.", you determine the reaction of the current output during operation.

The default setting is min. current 3.8 mA and max. current 20.5 mA.

False signal suppression

The following circumstances cause interfering reflections and can influence the measurement:

- High mounting nozzles
- Vessel internals such as struts
- Deflectors, etc.

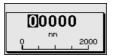
i


Note:

A false signal suppression is only recommended with liquid applica-

A false signal suppression detects, marks and saves these false signals to ensure that they are ignored in the level measurement.

This should be done with the lowest possible level so that all potential interfering reflections can be detected.


Proceed as follows:

Enter the actual distance from the sensor to the medium surface.

All interfering signals in this section are detected by the sensor and stored.

Keep in mind that with covered probe only false signals in the uncovered area of the probe are detected.

Note:

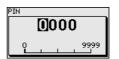
Check the distance to the medium surface, because if an incorrect (too large) value is entered, the existing level will be saved as a false signal. The level would then no longer be detectable in this area.

If a false signal suppression has already been created in the sensor, the following menu window appears when selecting "False signal suppression":

The instrument carries out an automatic false signal suppression as soon as the probe is uncovered. The false signal suppression is always updated.

The menu item "Delete" is used to completely delete an already created false signal suppression. This is useful if the saved false signal suppression no longer matches the metrological conditions in the vessel.

Lock/Unlock adjustment


In the menu item "Lock/unlock adjustment", you can protect the sensor parameters against unauthorized or inadvertent modification. The PIN is activated/deactivated permanently.

With active PIN, only the following adjustment functions are possible without entering a PIN:

- Select menu items and show data
- Read data from the sensor into the display and adjustment module

Caution:

When the PIN is active, adjustment via PACTware/DTM as well as other systems is also blocked.

In delivery status, the PIN is 0000.

Call our service department if you have modified and forgotten the PIN.

Current output 2

If a supplementary electronics with an additional current output is installed in the instrument, you can adjust the additional current output separately.

In menu item" Current output 2" you specify which measured value the additional current output refers to.

The procedure corresponds to the previous settings of the standard current output. See "Setup - Current output".

6.4.2 Display

In the main menu point "*Display*", the individual submenu points should be selected one after the other and provided with the correct parameters to ensure the optimum adjustment of the display options. The procedure is described in the following.

The following submenu points are available:

The submenu points are described below.

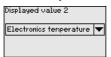
Menu language

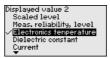

This menu item enables the setting of the requested national language.

In delivery status, the sensor is set to English.

Displayed value 1

In this menu item, you define the indication of the measured value on the display. You can display two different measured values. In this menu item, you define measured value 1.




The default setting for the displayed value 1 is "Filling height Level".

Displayed value 2

In this menu item, you define the indication of the measured value on the display. You can display two different measured values. In this menu item, you define measured value 2.

The default setting for the displayed value 2 is the electronics temperature.

Display format

In this menu item, you define the display format of the measured value on the display. You can define different display formats for the two measured values.

You can thus define the number of decimal positions the measured value is displayed with.

The default setting for the display format is "Automatic".

Backlight

The integrated background lighting can be switched off via the adjustment menu. The function depends on the strength of the supply voltage, see "*Technical data*".

To maintain the function of the device, the lighting is temporarily switched off if the power supply is insufficient.

In delivery status, the lighting is switched on.

6.4.3 Diagnostics

Device status

In this menu item, the device status is displayed.

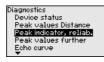
When the instrument displays a fault signal, you can here get detailed information on the failure reason.

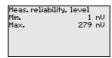
Peak values, distance

The respective min. and max. measured value is saved in the sensor. The two values are displayed in the menu item "Peak values, distance".

Distance Min. Max.	to the	level 68 265	mm mm

VEGAFLEX 82 • Four-wire 4 ... 20 mA/HART


In another window you can reset the peak value.

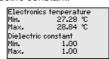


Peak values, measurement reliability

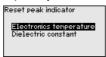
The respective min. and max. measured values are saved in the sensor. The two values are displayed in the menu item "Peak values, measurement reliability".

The measurement can be influenced by the process conditions. In this menu item, the measurement reliability of the level measurement is displayed in mV. The higher the value, the more reliable the measurement.

In another window you can reset the peak value.



Peak values, additional


The respective min. and max. measured values are saved in the sensor. The values are displayed in the menu item "Peak values Additional".

This menu item displays the peak values of the electronics temperature as well as the dielectric constant.

In another window you can carry out a reset of the two peak values separately.

Information:

If one of the display values flashes, there is actually no valid value available.

Echo curve

The menu item "Echo curve" shows the signal strength of the echoes over the measuring range in V. The signal strength enables an evaluation of the quality of the measurement.

Diagnostics
Peak indicator, reliab.
Peak values further
Echo curve
Simulation
Echo curve memory

With the following functions you can zoom part sections of the echo curve.

- "X-Zoom": Zoom function for the meas. distance
- "Y-Zoom": 1, 2, 5 and 10x signal magnification in "V"
- "Unzoom": Reset the presentation to the nominal measuring range without magnification

Simulation

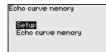
In this menu item you can simulate measured values via the current output. This allows the signal path to be tested, e.g. through downstream indicating instruments or the input card of the control system.

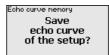
Select the requested simulation variable and set the requested value.

Caution:

During simulation, the simulated value is output as 4 ... 20 mA current value and digital HART signal.

Push the **[ESC]** key to deactivate the simulation.


Information:

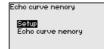

The simulation is terminated automatically 60 minutes after the activation of the simulation.

Echo curve memory

With the menu item "Setup" the echo curve it is possible to save at the time of setup. This is generally recommended; for using the Asset Management functions it is necessary. If possible, the curve should be saved with a low level in the vessel.

With this, you can detect signal changes over the operating time. With the adjustment software PACTware and the PC, the high-resolution echo curve can be displayed and used to compare the echo curve of the setup with the actual echo curve.



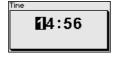

The function "Echo curve memory" enables storing echo curves of the measurement.

Under the sub-menu item "Echo curve memory" you can store the current echo curve.

Parameter settings for recording the echo curve and the settings of the echo curve itself can be carried out in the adjustment software PACTware.

With the adjustment software PACTware and the PC the high-resolution echo curve can be displayed and used later on to assess the quality of the measurement.

Date/Time


6.4.4 Additional adjustments

In this menu item, the internal clock of the sensor is set.

Reset

After a reset, certain parameter adjustments made by the user are reset.

Note:

After this menu window, the reset process is carried out. No further safety inquiry follows.

The following reset functions are available:

Delivery status: Restores the parameter settings at the time of shipment from the factory, incl. order-specific settings. Any stored false signal suppression or user-programmed linearisation curve, as well as the measured value memory, are deleted.

Basic settings: Restores the parameter settings, incl. special parameters, to the default values of the respective instrument. Any stored false signal suppression or user-programmed linearisation curve, as well as the measured value memory, are deleted.

The following table shows the default values of the instrument. Depending on the instrument version or application, all menu items may not be available or some may be differently assigned:

Menu - Setup

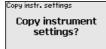
Menu item	Default value
Lock adjustment	Released
Measurement loop name	Sensor
Units	Distance unit: order-specific
	Temperature unit: order-specific
Probe length	Länge der Messsonde factory setting
Type of medium	Bulk solid
Application	Level in the metallic vessel
Medium, dielectric constant	Cereals, flour, sand / > 3
Superimposed gas phase	Yes
Max. adjustment - Level	100 %
Max. adjustment - Level	Distance: 0.000 m(d) - note blocking distances
Min. adjustment - Level	0 %
Min. adjustment - Level	Distance: Probe length - take dead band into account
Integration time - Level	0.0 s
Linearization type	Linear
Linearisation - Socket correction	0 mm
Linearisation - Vessel height	Probe length
Scaling variable - Level	Volume in I
Scaling unit - Level	Litres
Scaling format - Level	Without decimal positions
Scaling level - 100 % corresponds to	100
Scaling level - 0 % corresponds to	0
Current output, output variable First HART variable (PV)	Lin. percent - Level
Current output - Output characteristics	0 100 % correspond to 4 20 mA
Current output - Reaction in case of fault	≤ 3.6 mA
Current output - Min.	3.8 mA
Current output - Max.	20.5 mA
Current output 2 - Output variable Second HART variable (SV)	Distance - Level
Current output 2 - Output characteristics	0 100 % correspond to 4 20 mA
Current output 2 - Reaction in case of fault	≤ 3.6 mA
Current output - Min.	3.8 mA
Current output - Max.	20.5 mA
Third HART variable (TV)	Measurement reliability, level
Fourth HART variable (QV)	Electronics temperature

Menu - Display

Menu item	Default value
Language	Selected language
Displayed value 1	Filling height Level
Displayed value 2	Electronics temperature
Display format 1	Automatically
Display format 2	Automatically
Backlight	Switched on

Menu - Additional adjustments

Menu item	Default value
PIN	0000
Date	Actual date
Time	Actual time
Time - Format	24 hours
Probe type	Device-specific


Copy instrument settings

The instrument settings are copied with this function. The following functions are available:

- Read from sensor: Read data from sensor and store into the display and adjustment module
- Write into sensor: Store data from the display and adjustment module back into the sensor

The following data or settings for adjustment of the display and adjustment module are saved:

- All data of the menu "Setup" and "Display"
- In the menu "Additional adjustments" the items "Reset, Date/Time"
- Special parameters

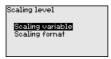
Prerequisites

The following requirements must be met for a successful transmission:

- The data can only be transferred to the same device type, e.g. VEGAFLEX 82
- It must be the same probe type, e.g. rod probe
- The firmware of both devices is identical.

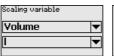
The copied data are permanently saved in an EEPROM memory in the display and adjustment module and remain there even in case of power failure. From there, they can be written into one or more sensors or kept as backup for a possible electronics exchange.

Note:


Before the data are stored in the sensor, a check is carried out to determine if the data fit the sensor. If the data do not fit, a fault signal is triggered or the function is blocked. When data are being written into the sensor, the display shows which instrument type the data originate from and which TAG-no, this sensor had.

Tip:

We recommend to save the instrument adjustments. In case of an electronics exchange the saved parameter adjustment data relieve this process.


Scaling level

Since scaling is very extensive, scaling of the level value was divided into two menu items.

Scaling level - Scaling prime

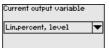
In menu item "Scaling variable" you define the scaling variable and the scaling unit for the level value on the display, e.g. volume in I.

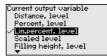
Scaling level - Scaling format

Scaling
$$100 \times = 100$$
 1 $0 \times = 0$ 1

In menu item "Scaling format" you define the scaling format on the display and the scaling of the measured level value for 0 % and 100 %

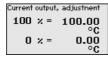
Current output

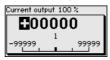

Since scaling is very extensive, scaling of the level value was divided into two menu items.



Current output - Current output size

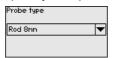
In menu item "Current output, variable" you specify which measured variable the current output refers to.





Current output - Current output adjustment

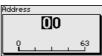
In menu item "Current output, adjustment" you can assign a respective measured value to the current output.

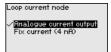


Probe type

In this menu item you can select the type and size of your probe from a list of all possible probes. This is necessary to adapt the electronics optimally to the probe.

HART mode


The sensor offers the HART modes "Analogue current output" and "Fix current (4 mA)". In this menu item you determine the HART mode and enter the address with Multidrop mode.


In the mode "Fixed current output" up to 63 sensors can be operated on one two-wire cable (Multidrop operation). An address between 0 and 63 must be assigned to each sensor.

If you select the function "Analogue current output" and also enter an address number, you can output a 4 ... 20 mA signal in Multidrop mode.

In the mode "Fixed current (4 mA)" a fixed 4 mA signal is output independently of the actual level.

The default setting is "Analogue current output" and the address 00.

Special parameters

In this menu item you gain access to the protected area where you can enter special parameters. In exceptional cases, individual parameters can be modified in order to adapt the sensor to special requirements.

Change the settings of the special parameters only after having contacted our service staff.

6.4.5 Info

Device name

In this menu, you read out the instrument name and the instrument serial number.

Instrument version

In this menu item, the hardware and software version of the sensor is displayed.

Software version
1.0.0
Hardware version
1.0.0

Factory calibration date

In this menu item, the date of factory calibration of the sensor as well as the date of the last change of sensor parameters are displayed via the display and adjustment module or via the PC.

Factory calibration date
3. Aug 2012
Last change
29. Nov 2012

Sensor characteristics

In this menu item, the features of the sensor such as approval, process fitting, seal, measuring range, electronics, housing and others are displayed.

Sensor characteristics

Display

now?

Sensor characteristics Process fitting / Material Thread G¼ PN6, DIN 3852-A / 316L Sensor characteristics Cable entry / Conn ection M20x1,5 / Cable gl and PR black

Example for displayed sensor features.

6.5 Saving the parameterisation data

On paper

We recommended writing down the adjustment data, e.g. in this operating instructions manual, and archiving them afterwards. They are thus available for multiple use or service purposes.

In the display and adjustment module

If the instrument is equipped with a display and adjustment module, the parameter adjustment data can be saved therein. The procedure is described in menu item "Copy device settings".

7 Setup with PACTware

7.1 Connect the PC

Via the interface adapter directly on the sensor

Fig. 18: Connection of the PC directly to the sensor via the interface adapter

- 1 USB cable to the PC
- 2 Interface adapter VEGACONNECT
- 3 Sensor

Connection via HART

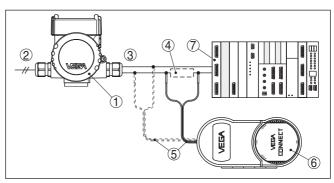


Fig. 19: Connecting the PC via HART to the signal cable

- 1 VEGAFLEX 82
- 2 Voltage supply
- 3 4 ... 20 mA signal output
- 4 HART resistance approx. 250 Ω (optional depending on processing)
- 5 Connection cable with 2 mm pins and terminals
- 6 VEGACONNECT
- 7 Processing system/PLC

Necessary components:

- VEGAFLEX 82
- PC with PACTware and suitable VEGA DTM
- VEGACONNECT
- HART resistance approx. 250 Ω
- Processing system/PLC

i

Note:

With power supply units with integrated HART resistance (internal resistance approx. 250Ω), an additional external resistance is not

necessary. This applies, e.g. to the VEGA instruments VEGATRENN 149A, VEGAMET 381 and VEGAMET 391). Commercially available Ex separators are also usually equipped with sufficient current limitation resistance. In such cases, VEGACONNECT can be connected parallel to the 4 ... 20 mA cable.

7.2 Parameter adjustment with PACTware

Prerequisites

For parameter adjustment of the sensor via a Windows PC, the configuration software PACTware and a suitable instrument driver (DTM) according to FDT standard are required. The up-to-date PACTware version as well as all available DTMs are compiled in a DTM Collection. The DTMs can also be integrated into other frame applications according to FDT standard.

i

Note:

To ensure that all instrument functions are supported, you should always use the latest DTM Collection. Furthermore, not all described functions are included in older firmware versions. You can download the latest instrument software from our homepage. A description of the update procedure is also available in the Internet.

Further setup steps are described in the operating instructions manual "DTM Collection/PACTware" attached to each DTM Collection and which can also be downloaded from the Internet. Detailed descriptions are available in the online help of PACTware and the DTMs.

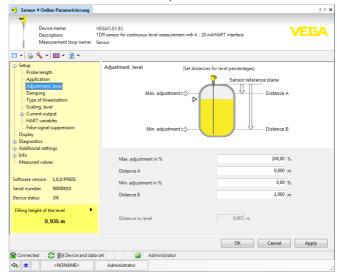


Fig. 20: Example of a DTM view

Standard/Full version

All device DTMs are available as a free-of-charge standard version and as a full version that must be purchased. In the standard version, all functions for complete setup are already included. An assistant for simple project configuration simplifies the adjustment considerably.

Saving/printing the project as well as import/export functions are also part of the standard version.

In the full version there is also an extended print function for complete project documentation as well as a save function for measured value and echo curves. In addition, there is a tank calculation program as well as a multiviewer for display and analysis of the saved measured value and echo curves.

The standard version is available as a download under www.vega.com/downloads and "Software". The full version is available on CD from the agency serving you.

7.3 Set up with the quick setup

General information

The quick setup is another option for parameter adjustment of the sensor. It allows fast, convenient adjustment of the most important parameters to adapt the sensor quickly to standard applications. To use it, select the function "Quick setup" in the start screen.

Fig. 21: Select quick setup

- 1 Quick setup
- 2 Extended adjustment
- 3 Maintenance

Quick setup

With quick setup you can carry out the parameter adjustment of VEGAFLEX 82 for your application in just a few simple steps. The assistant-driven adjustment includes the basic settings for simple, reliable setup and commissioning.

Information:

If the function is inactive, then possibly no instrument is connected. Check the connection to the instrument.

Extended adjustment

With the extended adjustment, you carry out the parameter adjustment for the instrument via the clear menu structure in the DTM (Device Type Manager). This enables additional and special settings over and above those offered by quick setup.

Maintenance

Under the menu item "Maintenance" you get comprehensive and important support for servicing and maintenance. You can call up diagnostic functions and carry out an electronics exchange or a software update.

Start quick setup

Click to the button "Quick setup", to start the assistant-driven adjustment for a simplified and reliable setup.

7.4 Saving the parameterisation data

We recommend documenting or saving the parameterisation data via PACTware. That way the data are available for multiple use or service purposes.

8 Set up with other systems

8.1 DD adjustment programs

Device descriptions as Enhanced Device Description (EDD) are available for DD adjustment programs such as, for example, AMS™ and PDM.

The files can be downloaded at www.vega.com/downloads under "Software".

8.2 Field Communicator 375, 475

Device descriptions for the instrument are available as EDD for parameterisation with Field Communicator 375 or 475.

Integrating the EDD into the Field Communicator 375 or 475 requires the "Easy Upgrade Utility" software, which is available from the manufacturer. This software is updated via the Internet and new EDDs are automatically accepted into the device catalogue of this software after they are released by the manufacturer. They can then be transferred to a Field Communicator.

9 Diagnostics and servicing

9.1 Maintenance

Maintenance

If the device is used properly, no special maintenance is required in normal operation.

Cleaning

The cleaning helps that the type label and markings on the instrument are visible.

Take note of the following:

- Use only cleaning agents which do not corrode the housings, type label and seals
- Use only cleaning methods corresponding to the housing protection rating

9.2 Diagnosis memory

The instrument has several memories available for diagnostic purposes. The data remain there even in case of voltage interruption.

Measured value memory

Up to 100,000 measured values can be stored in the sensor in a ring memory. Each entry contains date/time as well as the respective measured value. Storable values are for example:

- Distance
- Filling height
- Percentage value
- Lin. percent
- Scaled
- Current value
- Measurement reliability
- Electronics temperature

When the instrument is shipped, the measured value memory is active and stores distance, measurement reliability and electronics temperature every 3 minutes.

In "Extended adjustment" you can select the respective measured values.

The requested values and recording conditions are set via a PC with PACTware/DTM or the control system with EDD. Data are thus read out and also reset.

Event memory

Up to 500 events are automatically stored with a time stamp in the sensor (non-deletable). Each entry contains date/time, event type, event description and value. Event types are for example:

- Modification of a parameter
- Switch-on and switch-off times
- Status messages (according to NE 107)
- Error messages (according to NE 107)

The data are read out via a PC with PACTware/DTM or the control system with EDD.

Echo curve memory

The echo curves are stored with date and time and the corresponding echo data. The memory is divided into two sections:

Echo curve of the setup: This is used as reference echo curve for the measurement conditions during setup. Changes in the measurement conditions during operation or buildup on the sensor can thus be recognized. The echo curve of the setup is stored via:

- PC with PACTware/DTM
- Control system with EDD
- Display and adjustment module

Further echo curves: Up to 10 echo curves can be stored in a ring buffer in this memory section. Additional echo curves are stored via:

- PC with PACTware/DTM
- Control system with EDD
- Display and adjustment module

9.3 Status messages

The instrument features self-monitoring and diagnostics according to NE 107 and VDI/VDE 2650. In addition to the status messages in the following tables there are more detailed error messages available under the menu item "Diagnostics" via the respective adjustment module.

Status messages

The status messages are divided into the following categories:

- Failure
- Function check
- Out of specification
- Maintenance required

and explained by pictographs:

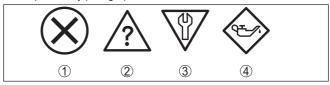


Fig. 22: Pictographs of the status messages

- 1 Failure red
- 2 Out of specification yellow
- 3 Function check orange
- 4 Maintenance required blue

Failure: Due to a malfunction in the instrument, a fault signal is output.

This status message is always active. It cannot be deactivated by the user.

Function check: The instrument is being worked on, the measured value is temporarily invalid (for example during simulation).

This status message is inactive by default.

Out of specification: The measured value is unreliable because an instrument specification was exceeded (e.g. electronics temperature).

This status message is inactive by default.

Maintenance required: Due to external influences, the instrument function is limited. The measurement is affected, but the measured value is still valid. Plan in maintenance for the instrument because a failure is expected in the near future (e.g. due to buildup).

This status message is inactive by default.

Failure

Code	Cause	Rectification	DevSpec State in CMD 48
Text mes- sage			
F013 no measured	Sensor does not detect an echo during operation	Check for correct mounting and/or parameter adjustment	Bit 0 of Byte 0 5
value avail- able	Process component or probe contaminated or defective	Clean or exchange process component or probe	
F017	Adjustment not within speci-	Change adjustment according	Bit 1 of Byte 0 5
Adjustment span too small	fication	to the limit values (difference between min. and max. ≥ 10 mm)	
F025 Error in the	Index markers are not continuously rising, for example	Check values of the linearization table	Bit 2 of Byte 0 5
linearization table	illogical value pairs	Delete/create a new linearization table	
F036	Failed or interrupted software	Repeat software update	Bit 3 of Byte 0 5
No operable	update	Check electronics version	
software		Exchanging the electronics	
		Send instrument for repair	
F040	Hardware defect	Exchanging the electronics	Bit 4 of Byte 0 5
Error in the electronics		Send instrument for repair	
F041	Probe mechanically defective	Check probe and exchange, if	Bit 13 of Byte 0 5
Probe loss		necessary	
F080 General soft- ware error	General software error	Disconnect operating voltage briefly	Bit 5 of Byte 0 5
F105 Measured	The instrument is still in the switch-on phase, the meas-	Wait for the end of the switch- on phase	Bit 6 of Byte 0 5
value is deter- mined	ured value could not yet be determined	Duration depending on the version and parameter adjustment max. 5 min.	
F113	EMC interference	Remove EMC influences	Bit 12 of Byte 0 5
Communica- tion error	Transmission error during external communication with four-wire power supply unit	Exchange four-wire power supply unit or electronics	

Code	Cause	Rectification	DevSpec State in CMD 48
Text mes- sage			
F260 Error in the	Error in the calibration carried out in the factory	Exchanging the electronics Send instrument for repair	Bit 8 of Byte 0 5
calibration	Error in the EEPROM		
F261	Error during setup	Carry out a reset	Bit 9 of Byte 0 5
Error in the	Error when carrying out a reset	Repeat setup	
instrument settings	False signal suppression faulty		
F264	Error during setup	Check for correct mounting and/or parameter adjustment	Bit 10 of Byte 0 5
Installation/ Setup error		Check probe length	
F265	Sensor no longer carries out a	Carry out a reset	Bit 11 of Byte 0 5
Measurement function disturbed	measurement	Disconnect operating voltage briefly	
F267	Sensor cannot start	Exchanging the electronics	No communication possible
No executable sensor soft-ware		Send instrument for repair	

Tab. 8: Error codes and text messages, information on causes as well as corrective measures (some specifications are only valid for four-wire instruments)

Function check

Code Text mes- sage	Cause	Rectification	DevSpec State in CMD 48
C700 Simulation active	A simulation is active	Finish simulation Wait for the automatic end after 60 mins.	"Simulation Active" in "Stand- ardized Status 0"

Tab. 9: Error codes and text messages, information on causes as well as corrective measures

Out of specification

Code	Cause	Rectification	DevSpec
Text message			State in CMD 48
S600	Temperature of the processing elec-	Check ambient temperature	Bit 8 of
Impermissible	tronics in the non-specified section	Insulate electronics	Byte 14 24
electronics tem- perature		Use instrument with higher temperature range	
S601	Level echo in the close range not	Reduce level	Bit 9 of
Overfilling	available	100 % adjustment: Increase value	Byte 14 24
		Check mounting socket	
		Remove possible interfering signals in the close range	
		Use coaxial probe	

Code Text message	Cause	Rectification	DevSpec State in CMD 48
S602 Level within the search range, compensation echo	Compensation echo superimposed by medium	100 % adjustment: Increase value	Bit 10 of Byte 14 24
S603 Impermissible operating voltage	Operating voltage below specified range	Check electrical connection If necessary, increase operating voltage	Bit 11 of Byte 14 24

Tab. 10: Error codes and text messages, information on causes as well as corrective measures

Maintenance

Code	Cause	Rectification	DevSpec
Text message			State in CMD 48
M500 Error in the delivery status	The data could not be restored during the reset to delivery status	Repeat reset Load XML file with sensor data into the sensor	Bit 0 of Byte 14 24
M501 Error in the non-active line- arisation table	Index markers are not continuously rising, for example illogical value pairs	Check linearization table Delete table/Create new	Bit 1 of Byte 14 24
M504 Error at a device interface	Hardware defect	Exchanging the electronics Send instrument for repair	Bit 4 of Byte 14 24
M505 no measured val-	Sensor does not detect an echo dur- ing operation	Check and correct mounting and/or parameter adjustment	Bit 5 of Byte 14 24
ue available	Process component or probe contaminated or defective	Clean or exchange process component or probe	
M506 Installation/Set- up error	Error during setup	Check and correct mounting and/or parameter adjustment Check probe length	Bit 6 of Byte 14 24
M507 Error in the instrument settings	Error during setup Error when carrying out a reset False signal suppression faulty	Carry out reset and repeat setup	Bit 7 of Byte 14 24

Tab. 11: Error codes and text messages, information on causes as well as corrective measures

9.4 Rectify faults

Reaction when malfunction occurs

The operator of the system is responsible for taking suitable measures to rectify faults.

Fault rectification

The first measures are:

- Evaluation of fault messages
- Checking the output signal
- Treatment of measurement errors

A smartphone/tablet with the adjustment app or a PC/notebook with the software PACTware and the suitable DTM offer you further comprehensive diagnostic possibilities. In many cases, the causes can be determined in this way and the faults eliminated.

4 ... 20 mA signal

Connect a multimeter in the suitable measuring range according to the wiring plan. The following table describes possible errors in the current signal and helps to eliminate them:

Error	Cause	Rectification
4 20 mA signal not stable	Fluctuating measured value	Set damping
4 20 mA signal missing	Electrical connection faulty	Check connection, correct, if necessary
	Voltage supply missing	Check cables for breaks; repair if necessary
	Operating voltage too low, load resistance too high	Check, adapt if necessary
Current signal greater than 22 mA, less than 3.6 mA	Sensor electronics defective	Replace device or send in for repair depending on device version

Treatment of measurement errors

The below tables show typical examples for application-relevant measurement errors. There are two measurement errors:

- Constant level
- Filling
- Emptying

The images in column "Error pattern" show the real level as a broken line and the level displayed by the sensor as a continuous line.

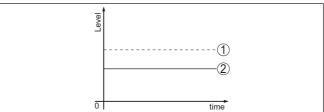


Fig. 23: The broken line 1 shows the real level, the continuous line 2 shows the level displayed by the sensor

•

Note:

If the output level is constant, the cause could also be the fault setting of the output to "Hold value".

If the level is too low, the reason could be a line resistance that is too high

Measurement error with constant level

Fault description	Cause	Rectification
Measured value shows a	Min./max. adjustment not correct	Adapt min./max. adjustment
too low or too high level	Incorrect linearization curve	Adapt linearization curve
S Green	Running time error (small measurement error close to 100 %/serious error close to 0 %)	Repeat setup
Measured value jumps to- wards 100 %	Due to the process, the amplitude of the product echo decreases	Carry out a false signal suppression
Toward Toward	A false signal suppression was not carried out	
ō smè	Amplitude or position of a false signal has changed (e.g. buildup); false signal suppression no longer matches	Determine the reason for the changed false signals, carry out false signal suppression, e.g. with buildup

Measurement error during filling

Fault description	Cause	Rectification
Measured value remains in the area of the bottom during filling	Echo from the probe end larger than the product echo, for example, with products with $\epsilon_{_{\rm r}}$ < 2.5 oil-based, solvents, etc.	Check parameter "Medium" and "Vessel height", adapt if necessary
Measured value remains momentarily unchanged during filling and then jumps to the correct level	Turbulence on the medium surface, quick filling	Check parameters, change if necessary, e.g. in dosing vessel, reactor
Measured value jumps sporadically to 100 % during filling	Changing condensation or contamination on the probe	Carry out a false signal suppression
Measured value jumps to ≥ 100 % or 0 m distance	Level echo is no longer detected in the close range due to false signals in the close range. The sensor goes into over-fill protection mode. The max. level (0 m distance) as well as the status message "Overfill protection" are output.	Eliminate false signals in the close range Check installation conditions If possible, switch off the function "Over- fill protection"

Measurement error during emptying

Fault description	Cause	Rectification		
Measured value remains	False signal larger than the level echo	Eliminate false signals in the close range		
unchanged in the close range during emptying	Level echo too small	Remove contamination on the probe. After having removed the source of the false signals, the false signal suppression must be deleted. Carry out a new false signal suppression		
Measured value remains reproducible in one position during emptying	Stored false signals in this position are larger than the level echo	Delete false signal suppression Carry out a new false signal suppression		
0 Grea				

Reaction after fault rectification

Depending on the reason for the fault and the measures taken, the steps described in chapter "Setup" must be carried out again or must be checked for plausibility and completeness.

24 hour service hotline

Should these measures not be successful, please call in urgent cases the VEGA service hotline under the phone no. **+49 1805 858550**.

The hotline is also available outside normal working hours, seven days a week around the clock.

Since we offer this service worldwide, the support is provided in English. The service itself is free of charge, the only costs involved are the normal call charges.

9.5 Exchanging the electronics module

If the electronics module is defective, it can be replaced by the user.

In Ex applications, only instruments and electronics modules with appropriate Ex approval may be used.

If there is no electronics module available on site, the electronics module can be ordered through the agency serving you. The electronics modules are adapted to the respective sensor and differ in signal output or voltage supply.

The new electronics module must be loaded with the default settings of the sensor. These are the options:

- In the factory
- · Or on site by the user

In both cases, the serial number of the sensor is needed. The serial numbers are stated on the type label of the instrument, on the inside of the housing as well as on the delivery note.

When loading on site, the order data must first be downloaded from the Internet (see operating instructions "*Electronics module*").

Caution:

All application-specific settings must be entered again. That's why you have to carry out a fresh setup after exchanging the electronics.

If you saved the parameter settings during the first setup of the sensor, you can transfer them to the replacement electronics module. A fresh setup is then not necessary.

9.6 Exchange or shorten cable/rod

Exchanging the cable/rod

The cable or rod (meas. part) of the probe can be shortened, if necessary. To loosen the rod or cable you need a fork spanner with spanner width 13.

- Loosen the rod or cable by applying a fork spanner to the flat surfaces (SW 13), provide counterforce with another fork spanner (SW 13)
- 2. Unscrew the loosened rod or cable manually.
- 3. Place the enclosed new double washer onto the thread.

Caution:

Make sure that the two components of the double washer remain together.

- 4. Screw the new rod and the new cable manually to the thread on the process fitting.
- Exert counterforce with the second fork spanner and tighten the measuring rod or cable on the flat surfaces with a torque of 20 Nm (15 lbf ft).

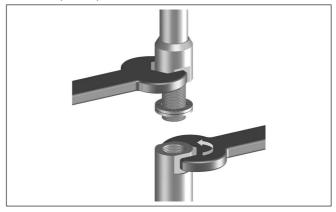


Fig. 24: Exchange cable or rod

Information:

Please maintain the specified torque so that the max. tensile strength of the connection remains.

 Enter new probe length and if necessary the new probe type and then carry out a fresh adjustment (see "Setup procedure, Carrying out min. adjustment - Carrying out max. adjustment").

Shorten cable/rod

The rod or cable of the probe can be shortened individually.

- 1. Mark the requested length with mounted measuring rod.
- 2. Cable: Loosen the three pins on the gravity weight

Cable ø 4: hexagon 3

Cable ø 6, cable ø 8: hexagon 4

- 3. Cable: remove the pins
- 4. Cable: Pull the cable out of the gravity weight
- Shorten the cable/rod with a cut-off wheel or metal saw at the marking. Take note of the specifications in the following illustration when shortening the cable.
- Cable: shift the cable into the gravity weight (according to the drawing)

Plastic coated cable: remove coating according drawing to 70 mm (2.76 in).

7. Cable: Fasten the cable with three pins, torque 20 Nm (14.75 lbf in)

Cable ø 4: 7 Nm (5.16 lbf ft)

Cable ø 6, cable ø 8: 20 Nm (14.75 lbf ft)

8. Enter new probe length and then carry out a fresh adjustment (see "Setup procedure, Carrying out min. adjustment - Carrying out max. adjustment").

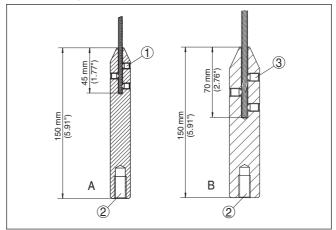


Fig. 25: Shortening the cable probe

- A Gravity weight cable ø 4 mm
- B Gravity weight cable ø 6 mm
- 1 Threaded pins
- 2 Thread M12 for eye-bolt
- 3 Threaded pins

9.7 Software update

The following components are required to update the instrument software:

- Instrument
- Voltage supply
- Interface adapter VEGACONNECT
- PC with PACTware
- Current instrument software as file

You can find the current instrument software as well as detailed information on the procedure in the download area of our homepage: www.vega.com.

You can find information about the installation in the download file.

Caution:

Instruments with approvals can be bound to certain software versions. Therefore make sure that the approval is still effective after a software update is carried out.

You can find detailed information in the download area at www.vega.com.

9.8 How to proceed if a repair is necessary

You can find an instrument return form as well as detailed information about the procedure in the download area of our homepage. By doing this you help us carry out the repair quickly and without having to call back for needed information.

In case of repair, proceed as follows:

- Print and fill out one form per instrument
- Clean the instrument and pack it damage-proof
- Attach the completed form and, if need be, also a safety data sheet outside on the packaging
- Ask the agency serving you to get the address for the return shipment. You can find the agency on our homepage.

10 Dismount

10.1 Dismounting steps

Warning:

Before dismounting, be aware of dangerous process conditions such as e.g. pressure in the vessel or pipeline, high temperatures, corrosive or toxic media etc.

Take note of chapters "Mounting" and "Connecting to voltage supply" and carry out the listed steps in reverse order.

10.2 Disposal

The instrument consists of materials which can be recycled by specialised recycling companies. We use recyclable materials and have designed the electronics to be easily separable.

WEEE directive

The instrument does not fall in the scope of the EU WEEE directive. Article 2 of this Directive exempts electrical and electronic equipment from this requirement if it is part of another instrument that does not fall in the scope of the Directive. These include stationary industrial plants.

Pass the instrument directly on to a specialised recycling company and do not use the municipal collecting points.

If you have no way to dispose of the old instrument properly, please contact us concerning return and disposal.

11 Supplement

11.1 Technical data

General data

316L corresponds to 1.4404 or 1.4435

Materials, wetted parts

- Process fitting 316L and PPS GF 40, Alloy C22 (2.4602) and PPS GF

40

- Process seal on the instrument side

(cable/rod leadthrough)

FKM (SHS FPM 70C3 GLT), FFKM (Kalrez 6375),

EPDM (A+P 70.10-02)

- Process seal On site (instruments with thread: Klingersil C-4400 is

enclosed) 316L

- Inner conductor (up to the separation

cable/rod)

316L or Alloy C22 (2.4602)

- Cable: Ø 4 mm (0.157 in) 316 (1.4401)

- Cable: ø 6 mm (0.236 in), PA coated Steel (galvanized), PA coated

- Cable: ø 6 mm (0.236 in) 316 (1.4401)

- Cable: ø 11 mm (0.433 in), PA coated Steel (galvanized), PA coated

- Gravity weight (optionally available) 316L

Materials, non-wetted parts

- Rod: ø 16 mm (0.63 in)

Plastic housing
 Plastic PBT (Polyester)

Aluminium die-cast housing
 Aluminium die-casting AlSi10Mg, powder-coated (Basis:

Polyester)

- Stainless steel housing (precision

casting)

316L 316l

Stainless steel housing (electropol-

ished)

- Seal between housing and housing lid Silicone SI 850 R

- Inspection window in housing cover

- Second Line of Defense (optional)1)

Plastic housing: Polycarbonate (UL746-C listed)

(optional)

Metal housing: Glass2)

Borosilicate glass GPC 540

- Ground terminal

316L

- Cable gland

PA, stainless steel, brass

- Sealing, cable gland

Supporting material

NBR

NBK

- Blind plug, cable gland

PA

Second Line of Defense (optional)3)

316L

- Glass potting

Borosilicate glass GPC 540

Glass polling

_ ---- g---- --- ---

Contacts

Alloy C22 (2.4602)

¹⁾ Only with Ex-d version.

²⁾ Aluminium, stainless steel precision casting and Ex d housing

³⁾ Only with Ex-d version.

 Helium leak rate 	< 10 ⁻⁶ mbar l/s
i lellulli leak late	< 10 IIIbai i/3

- Pressure resistance See process pressure of the sensor

Conductive connection Between ground terminal, process fitting and probe

Process fittings

Pipe thread, cylindrical (ISO 228 T1)
 G¾, G1, G1½ (DIN 3852-A)
 Pipe thread, conical (ASME B1.20.1)
 ¾ NPT, 1 NPT, 1½ NPT

FlangesDIN from DN 25, ASME from 1"

Weight

Instrument weight (depending on process fitting)
 approx. 0.8 ... 8 kg (0.176 ... 17.64 lbs)

Rod: Ø 16 mm (0.63 in)
 Cable: Ø 4 mm (0.157 in)
 Cable: Ø 6 mm (0.236 in), PA coated
 Cable: Ø 6 mm (0.236 in)
 Cable: Ø 6 mm (0.433 in), PA coated
 approx. 180 g/m (1.9 oz/ft)
 approx. 80 g/m (0.86 oz/ft)
 Cable: Ø 11 mm (0.433 in), PA coated
 approx. 320 g/m (3.44 oz/ft)

 Gravity weight for cable ø 4 mm (0.157 in) and ø 6 mm (0.236 in), PA coated

325 g (11.46 oz)

 Gravity weight for cable ø 6 mm (0.236 in) and ø 11 mm (0.433 in), PA coated

780 g (27.51 oz)

Probe length L (from seal surface)

- Rod: ø 16 mm (0.63 in) up to 6 m (19.69 ft)

- Trimming accuracy (rod) $\pm (1 \text{ mm} + 0.05 \% \text{ of the rod length})$

Cable: ø 4 mm (0.157 in)
 Cable: ø 6 mm (0.236 in), PA coated
 Cable: ø 6 mm (0.236 in)
 Up to 75 m (246.1 ft)
 Up to 65 m (213.3 ft)
 Up to 75 m (246.1 ft)
 Cable: ø 11 mm (0.433 in), PA coated
 Up to 65 m (213.3 ft)

- Trimming accuracy - Cable ±(2 mm + 0.05 % of the cable length)

Lateral load with rod: ø 16 mm (0.63 in) 30 Nm (22.13 lbf ft)

Max. tensile load

Cable: Ø 4 mm (0.157 in)
 Cable: Ø 6 mm (0.236 in), PA coated
 Cable: Ø 6 mm (0.236 in)
 Cable: Ø 6 mm (0.236 in)
 Cable: Ø 11 mm (0.433 in), PA coated
 30 KN (6744 lbf)
 30 KN (6744 lbf)

The tensile force of solids are subject of a normal fluctuation range. For this reason, the determined diagram value of the following diagrams must be multiplied with safety factor 2.

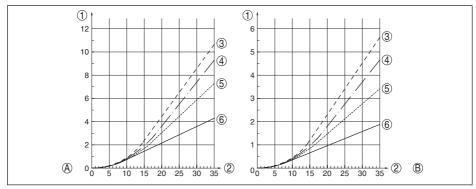


Fig. 26: Max. tensile load with cereals and plastic granules - Cable: ø 4 mm (0.157 in)

- A Cereals
- B Plastic granules
- 1 Tensile force in kN (the determined value must be multiplied with safety factor 2)
- 2 Cable length in m
- 3 Vessel diameter 12 m (39.37 ft)
- 4 Vessel diameter 9 m (29.53 ft)
- 5 Vessel diameter 6 m (19.69 ft)
- 6 Vessel diameter 3 m (9.843 ft)

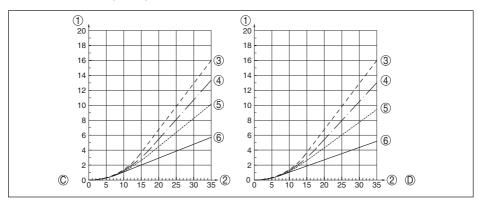


Fig. 27: Max. tensile load with sand and cement - Cable: Ø 4 mm (0.157 in)

- C Sand
- D Cement
- 1 Tensile force in kN (the determined value must be multiplied with safety factor 2)
- 2 Cable length in m
- 3 Vessel diameter 12 m (39.37 ft)
- 4 Vessel diameter 9 m (29.53 ft)
- 5 Vessel diameter 6 m (19.69 ft)
- 6 Vessel diameter 3 m (9.843 ft)

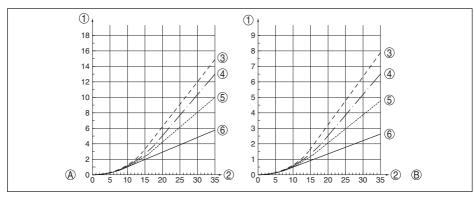


Fig. 28: Max. tensile load with cereals and plastic granules - Cable: Ø 6 mm, Ø 11 mm, PA coated

- A Cereals
- B Plastic granules
- 1 Tensile force in kN (the determined value must be multiplied with safety factor 2)
- 2 Cable length in m
- 3 Vessel diameter 12 m (39.37 ft)
- 4 Vessel diameter 9 m (29.53 ft)
- 5 Vessel diameter 6 m (19.69 ft)
- 6 Vessel diameter 3 m (9.843 ft)

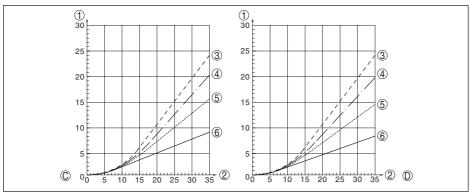


Fig. 29: Max. tensile load with sand and cement - Cable: Ø 6 mm, Ø 11 mm, PA coated

- C Sand
- D Cement
- 1 Tensile force in kN (the determined value must be multiplied with safety factor 2)
- 2 Cable length in m
- 3 Vessel diameter 12 m (39.37 ft)
- 4 Vessel diameter 9 m (29.53 ft)
- 5 Vessel diameter 6 m (19.69 ft)
- 6 Vessel diameter 3 m (9.843 ft)

Thread in gravity weight, e.g. for eye-bolt M 12 (cable version)

Torque for exchangeable cable or rod probe (in the process fitting)

- Cable: ø 4 mm (0.157 in)

8 Nm (5.9 lbf ft)

- Cable: ø 6 mm (0.236 in), PA coated	8 Nm (5.9 lbf ft)
- Cable: ø 6 mm (0.236 in)	20 Nm (14.75 lbf ft)
- Cable: ø 11 mm (0.433 in), PA coated	20 Nm (14.75 lbf ft)
- Rod: ø 16 mm (0.63 in)	20 Nm (14.75 lbf ft)

Torque for NPT cable glands and Conduit tubes

- Plastic housing max. 10 Nm (7.376 lbf ft) - Aluminium/Stainless steel housing max. 50 Nm (36.88 lbf ft)

Input variable	
Measured variable	Level of solids
Min. dielectric constant of the medium	ε _r ≥ 1.5

Output variable			
Output signals	4 20 mA/HART - active; 4 20 mA/HART - passive		
Range of the output signal	3.8 20.5 mA/HART (default setting)		
Terminal voltage passive	9 30 V DC		
Shortcircuit protection	Available		
Potential separation	Available		
Signal resolution	0.3 μΑ		
Fault signal, current output (adjustable)	Last valid measured value, ≥ 21.0 mA, ≤ 3.6 mA		
	In order to detect the rarely occurring hardware failures in the device, we recommend monitoring both interference values (\geq 21 mA, \leq 3.6 mA)		

Max. output current 21 mA

Starting current

- for 5 ms after switching on ≤ 10 mA - for run-up time $\leq 3.6 \, \text{mA}$ Load (4 ... 20 mA/HART - active) < 500 Ω

Damping (63 % of the input variable) 0 ... 999 s, adjustable HART output values according to HART 7 (default setting)4)

- First HART value (PV) Linearised percentage value, level

- Second HART value (SV) Distance to the level

- Third HART value (TV) Measurement reliability, level - Fourth HART value (QV) Electronics temperature

Indication value - Display and adjustment module⁵⁾

- Displayed value 1 Filling height - Level - Displayed value 2 Electronics temperature Resolution, digital < 1 mm (0.039 in)

⁴⁾ The output values can be assigned individually.

⁵⁾ The indication values can be assigned individually.

Measurement accuracy (according to DIN EN 60770-1)

Process reference conditions according to DIN EN 61298-1

− Temperature +18 ... +30 °C (+64 ... +86 °F)

- Relative humidity 45 ... 75 %

- Air pressure +860 ... +1060 mbar/+86 ... +106 kPa

(+12.5 ... +15.4 psig)

Mounting, reference conditions

- Min. distance to internal installations > 500 mm (19.69 in)

Vessel metallic, Ø 1 m (3.281 ft), centric mounting, process fit-

ting flush with the vessel ceiling

Reflector metallic, ø 1 m

Medium
 Bulk solids - cereals, flour, cement (dielectric con-

stant ~2.0)

Mounting
 Probe end does not touch the vessel bottom
 Sensor parameter adjustment
 No gating out of false signals carried out

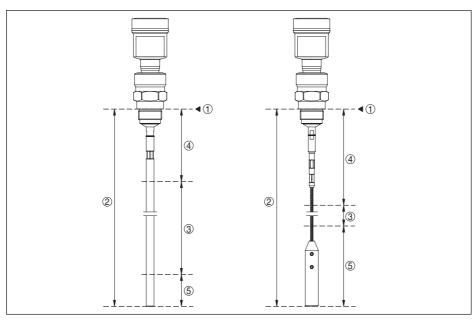


Fig. 30: Measuring ranges - VEGAFLEX 82

- 1 Reference plane
- 2 Probe length L
- 3 Measuring range
- 4 Upper blocking distance (see following diagrams grey section)
- 5 Lower blocking distance (see following diagrams grey section)

Typical deviation⁶⁾

See following diagrams

6) Depending on the mounting conditions, deviations can occur which can be rectified by adapting the adjustment or changing the measured value offset in the DTM service mode.

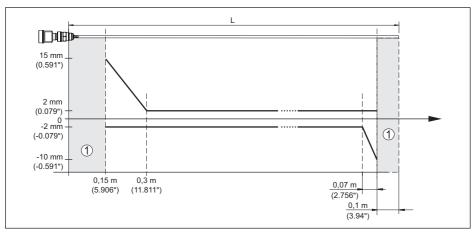


Fig. 31: Deviation VEGAFLEX 82 in rod version

- 1 Blocking distance (no measurement possible in this area)
- L Probe length

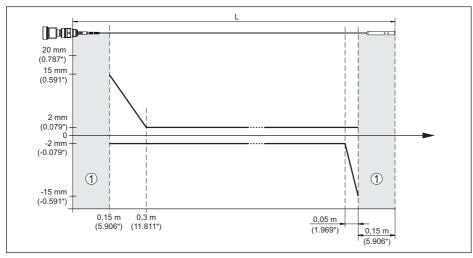


Fig. 32: Deviation VEGAFLEX 82 in cable version

- 1 Blocking distance (no measurement possible in this area)
- L Probe length

Non-repeatability ≤ ±1 mm

Variables influencing measurement accuracy

Specifications for the digital measured value

Temperature drift - Digital output ±3 mm/10 K relating to the max. measuring range or max. 10 mm (0.394 in)

Additional deviation through electromag- $< \pm 10$ mm ($< \pm 0.394$ in)

netic interference acc. to EN 61326

Specifications apply also to the current output7)

Temperature drift - Current output ±0.03 %/10 K relating to the 16 mA span or max. ±0.3 %

Deviation in the current output due to digital/analogue conversion

- Non-Ex and Ex-ia version $< \pm 15 \ \mu A$ - Ex-d-ia version $< \pm 40 \ \mu A$

Additional deviation through electromag- $< \pm 150~\mu A$ netic interference acc. to EN 61326

Influence of the superimposed gas and pressure on measurement accuracy

The propagation speed of the radar impulses in gas or vapour above the medium is reduced by high pressure. This effect depends on the superimposed gas or vapours.

The following table shows the resulting deviation for some typical gases and vapours. The specified values refer to the distance. Positive values mean that the measured distance is too large, negative values that the measured distance is too small.

Gas phase	Temperature	Pressure			
		1 bar (14.5 psig)	10 bar (145 psig)	50 bar (725 psig)	
Air	20 °C (68 °F)	0 %	0.22 %	1.2 %	
	200 °C (392 °F)	-0.01 %	0.13 %	0.74 %	
	400 °C (752 °F)	-0.02 %	0.08 %	0.52 %	
Hydrogen	20 °C (68 °F)	-0.01 %	0.1 %	0.61 %	
	200 °C (392 °F)	-0.02 %	0.05 %	0.37 %	
	400 °C (752 °F)	-0.02 %	0.03 %	0.25 %	
Steam (saturated steam)	100 °C (212 °F)	0.26 %	-	-	
	180 °C (356 °F)	0.17 %	2.1 %	-	
	264 °C (507 °F)	0.12 %	1.44 %	9.2 %	
	366 °C (691 °F)	0.07 %	1.01 %	5.7 %	

Characteristics and performance data

Measuring cycle time < 500 msStep response time⁸⁾ $\leq 3 \text{ s}$ Max. filling/emptying speed 1 m/min

Products with high dielectric constant (>10) up to 5 m/

min.

Ambient conditions

Ambient, storage and transport temperature

- Standard -40 ... +80 °C (-40 ... +176 °F)

⁷⁾ Also for the additional current output (optional).

Time span after a sudden measuring distance change by max. 0.5 m in liquid applications, max 2 m with bulk solids applications, until the output signal has taken for the first time 90 % of the final value (IEC 61298-2).

CSA, Ordinary Location

-40 ... +60 °C (-40 ... +140 °F)

Process conditions

For the process conditions, please also note the specifications on the type label. The lowest value always applies.

The measurement error through the process conditions in the specified pressure and temperature range is < 1 %.

Process pressure

-1 ... +40 bar/-100 ... +4000 kPa (-14.5 ... +580 psig), depending on the process fitting

Vessel pressure relating to the flange nominal pressure stage

see supplementary instructions manual "Flanges according to DIN-EN-ASME-JIS"

Process temperature - Cable versions with PA coating

-40 ... +80 °C (-40 ... +176 °F)

Process temperature (thread or flange temperature) with process seals

- FKM (SHS FPM 70C3 GLT)

-40 ... +150 °C (-40 ... +302 °F) -40 ... +150 °C (-40 ... +302 °F)

– EPDM (A+P 70.10-02)– FFKM (Kalrez 6375) - with tempera-

-20 ... +200 °C (-4 ... +392 °F)

ture adapter

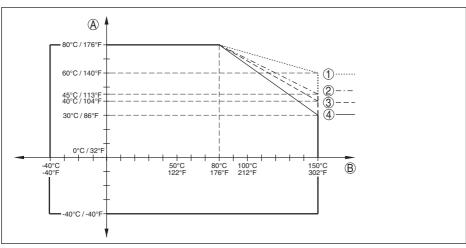


Fig. 33: Ambient temperature - process temperature, standard version

- A Ambient temperature
- B Process temperature (depending on the seal material)
- 1 Aluminium housing
- 2 Plastic housing
- 3 Stainless steel housing, precision casting
- 4 Stainless steel housing, electropolished

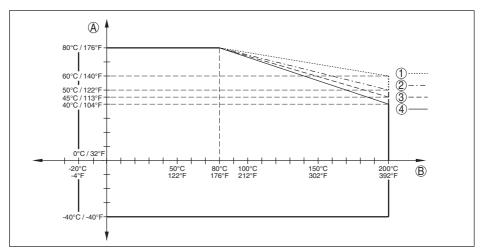


Fig. 34: Ambient temperature - process temperature, version with temperature adapter

- A Ambient temperature
- B Process temperature (depending on the seal material)
- 1 Aluminium housing
- 2 Plastic housing
- 3 Stainless steel housing, precision casting
- 4 Stainless steel housing, electropolished

Vibration resistance

- Rod probe 1 g with 5 ... 200 Hz according EN 60068-2-6 (vibration

at resonance) with rod length 50 cm (19.69 in)

Shock resistance

- Rod probe 25 g, 6 ms according to EN 60068-2-27 (mechanical

shock) with rod length 50 cm (19.69 in)

Electromechanical data - version IP67

Options of the cable entry

- Cable entry M20 x 1.5; ½ NPT

- Cable gland M20 x 1.5; ½ NPT (cable ø see below table)

Blind plug
 M20 x 1.5; ½ NPT

- Closing cap ½ NPT

Material ca- ble gland	Material seal insert	Cable diameter				
		4.5 8.5 mm	5 9 mm	6 12 mm	7 12 mm	10 14 mm
PA	NBR	-	•	•	-	•
Brass, nickel- plated	NBR	•	•	•	-	-
Stainless steel	NBR	_	•	•	_	•

Wire cross-section (spring-loaded terminals)

- Massive wire, stranded wire 0.2 ... 2.5 mm² (AWG 24 ... 14) Stranded wire with end sleeve 0.2 ... 1.5 mm² (AWG 24 ... 16)

Integrated clock

Date format Day.Month.Year Time format 12 h/24 h Time zone, factory setting CFT

Max. rate deviation 10.5 min/year

Additional output parameter - Electronics temperature

-40 ... +85 °C (-40 ... +185 °F) Range

Resolution < 0.1 KDeviation + 3 K

Availability of the temperature values

 Indication Via the display and adjustment module

- Output Via the respective output signal

Voltage supply

Operating voltage

9.6 ... 48 V DC, 20 ... 42 V AC, 50/60 Hz Version for low voltage

- Version for mains voltage 90 ... 253 V AC, 50/60 Hz

Reverse voltage protection Integrated

Load resistor (4 ... 20 mA/HART - passive)

- Calculation (U_R - U_{min})/0.022 A

- Example - U_p= 24 V DC $(24 \text{ V} - 12 \text{ V})/0.022 \text{ A} = 545 \Omega$

Load resistor (4 ... 20 mA/HART - active) < 500 Ω Max. power consumption 4 VA: 2.1 W

Potential connections and electrical separating measures in the instrument

Electronics Not non-floating Reference voltage9) 500 V AC

Conductive connection Between ground terminal and metallic process fitting

Electrical protective measures

Protection, depending on housing version

- Plastic housing IP66/IP67 acc. to IEC 60529, Type 4X acc. to NEMA - Aluminium housing; stainless steel

housing - precision casting NEMA¹⁰⁾

IP66/IP68 (0.2 bar) acc. to IEC 60529, type 6P acc. to

Overvoltage category (IEC 61010-1) - Version with low voltage

⁹⁾ Galvanic separation between electronics and metal housing parts

¹⁰⁾ The prerequisites for maintaining the protection rating are a suitable cable as well as correct mounting.

Connection of the feeding power supply unit to networks of overvoltage category

Overvoltage category (IEC 61010-1) - Version with mains voltage

- Altitude up to 2000 m (6562 ft) above III sea level
- Altitude up to 5000 m (16404 ft) above III Only with connected overvoltage protection sea level
- Altitude up to 5000 m (16404 ft) above II sea level

Pollution degree¹¹⁾
Protection rating (IEC 61010-1)

11.2 Dimensions

The following dimensional drawings represent only an extract of all possible versions. Detailed dimensional drawings can be downloaded at www.vega.com/downloads under "Drawings".

Housing

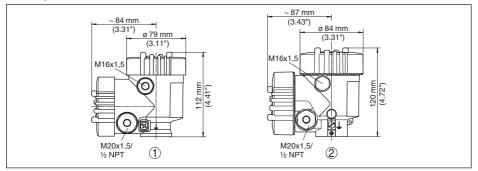


Fig. 35: Dimensions housing (with integrated display and adjustment module the housing is 9 mm/0.35 in higher)

- 1 Plastic double chamber
- 2 Aluminium/Stainless steel double chamber

⁴¹⁸³⁰⁻EN-210914

¹¹⁾ When used with fulfilled housing protection.

VEGAFLEX 82, cable version ø 4 mm (0.157 in), ø 6 mm (0.236 in), PA coated

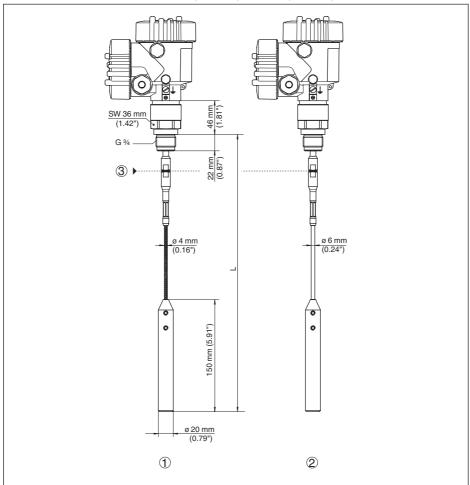


Fig. 36: VEGAFLEX 82, cable \emptyset 4 mm (0.157 in), \emptyset 6 mm (0.236 in) threaded version with gravity weight (all gravity weights with thread M12 for eye-bolt)

- L Sensor length, see chapter "Technical data"
- 1 Cable ø 4 mm (0.157 in)
- 2 Cable ø 6 mm (0.236 in), PA coated
- 3 Joint cable

VEGAFLEX 82, cable version ø 6 mm (0.236 in), ø 11 mm (0.433 in), PA coated

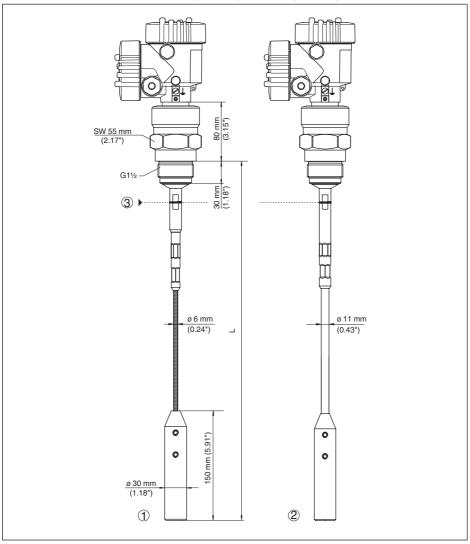


Fig. 37: VEGAFLEX 82, cable ø 6 mm (0.236 in), ø 11 mm (0.433 in) threaded version with gravity weight (all gravity weights with thread M12 for eye-bolt)

- L Sensor length, see chapter "Technical data"
- 1 Cable ø 6 mm (0.236 in)
- 2 Cable ø 11 mm (0.433 in), PA coated
- 3 Joint cable

VEGAFLEX 82, rod version ø 16 mm (0.63 in)

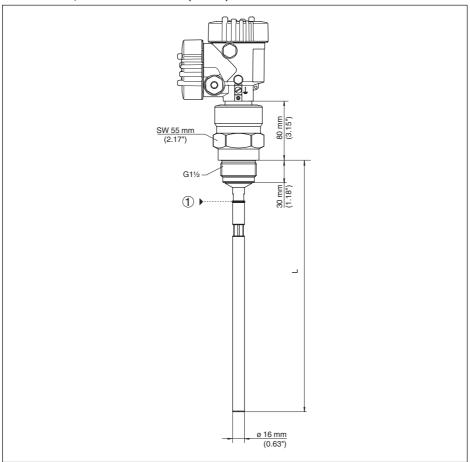


Fig. 38: VEGAFLEX 82, rod ø 16 mm (0.63 in), threaded version

- L Sensor length, see chapter "Technical data"
- 1 Joint rod

11.3 Industrial property rights

VEGA product lines are global protected by industrial property rights. Further information see www.vega.com.

VEGA Produktfamilien sind weltweit geschützt durch gewerbliche Schutzrechte.

Nähere Informationen unter www.vega.com.

Les lignes de produits VEGA sont globalement protégées par des droits de propriété intellectuelle. Pour plus d'informations, on pourra se référer au site www.vega.com.

VEGA lineas de productos están protegidas por los derechos en el campo de la propiedad industrial. Para mayor información revise la pagina web www.vega.com.

Линии продукции фирмы ВЕГА защищаются по всему миру правами на интеллектуальную собственность. Дальнейшую информацию смотрите на сайте <u>www.vega.com</u>.

VEGA系列产品在全球享有知识产权保护。

进一步信息请参见网站<www.vega.com。

11.4 Trademark

All the brands as well as trade and company names used are property of their lawful proprietor/originator.

INDEX

Α

Accessories

- Display and adjustment module 9
- External display and adjustment unit 10 Adjustment
 - Max. adjustment 29
 - Min. adjustment 29

Adjustment system 25

Application 28

Application area 9

В

Backlight 34

C

Check output signal 53
Connection cable 18
Connection procedure 19
Connection technology 19
Copy sensor settings 39
Current output 40
Current output 2 33
Current output, adjustment 41
Current output, meas. variable 40
Current output, min./max. 31
Current output mode 31

D

Curve display

Damping 29
Date of manufacture 42
Date/Time 37
Default values 37
Deviation 53
Device status 34
Display format 34

- Echo curve 35

Ε

Echo curve memory 49
Echo curve of the setup 36
EDD (Enhanced Device Description) 47
Electronics compartment - double chamber
housing 21
Error codes 51
Event memory 48

F

Factory calibration date 42 False signal suppression 31

Fault

Rectification 52Fault rectification 52Functional principle 9

G

Grounding 19

Н

HART address 41

Inflowing medium 15 Installation position 13

K

Key function 25

L

Language 33 Linearisation 30 Lock adjustment 32

M

Main menu 26 Measured value indication 33, 34 Measured value memory 48 Measurement loop name 27 Measurement reliability 35

Ν

NAMUR NE 107 49

- Failure 50
- Maintenance 52
- Out of specification 51

Р

Peak value indicator 34, 35 Probe length 28 Probe type 41 Protection class 18

Q

Quick setup 26

R

Read out info 42 Repair 58 Replacement parts

 Display and adjustment module with heating 10

- Rod components 10
- -Spacer 11

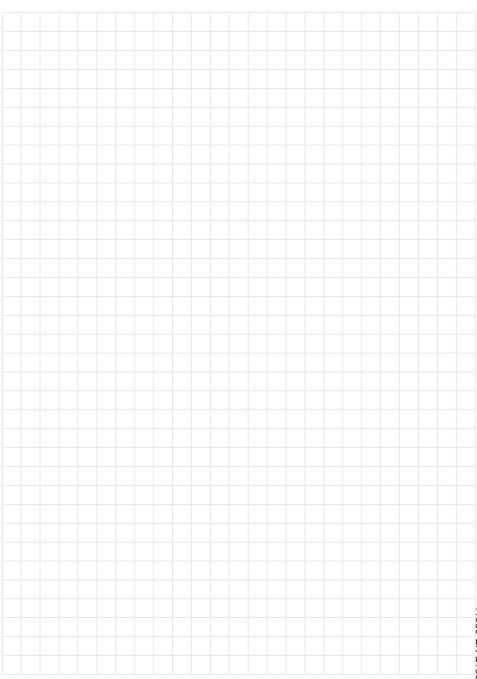
Reset 37

S

Scaling measured value 40 Sensor characteristics 42 Service hotline 55 Simulation 36 Special parameters 41

T

Type label 7
Type of medium 28


U

Units 27

٧

Voltage supply 18, 70

Printing date:

All statements concerning scope of delivery, application, practical use and operating conditions of the sensors and processing systems correspond to the information available at the time of printing.

Subject to change without prior notice

© VEGA Grieshaber KG, Schiltach/Germany 2021

41830-EN-210914