Betriebsanleitung

Hängedruckmessumformer mit keramischer Messzelle

VEGABAR 86

4 ... 20 mA/HART

Document ID: 45039

Inhaltsverzeichnis

1	Zu d	esem Dokument	4
	1.1	Funktion	4
	1.2	Zielgruppe	4
	1.3	Verwendete Symbolik	4
_			_
2		rer Sicherheit	
	2.1	Autorisiertes Personal	
	2.2	Bestimmungsgemäße Verwendung	
	2.3	Warnung vor Fehlgebrauch	
	2.4	Allgemeine Sicherheitshinweise	5
	2.5	EU-Konformität	
	2.6	NAMUR-Empfehlungen	
	2.7	Umwelthinweise	6
3	Prod	uktbeschreibung	7
	3.1	Aufbau	7
	3.2	Arbeitsweise	
	3.3	Verpackung, Transport und Lagerung	
	3.4	Zubehör	
4	Mon	ieren	
	4.1	Allgemeine Hinweise	
	4.2	Belüftung und Druckausgleich	15
	4.3	Füllstandmessung	18
	4.4	Externes Gehäuse	18
_	A	!- O	40
5		ie Spannungsversorgung anschließen	19
5	5.1	Anschluss vorbereiten	19
5	5.1 5.2	Anschließen	19 20
5	5.1 5.2 5.3	Anschluss vorbereiten Anschließen Einkammergehäuse	19 20 21
5	5.1 5.2 5.3 5.4	Anschluss vorbereiten Anschließen Einkammergehäuse Zweikammergehäuse	19 20 21 22
5	5.1 5.2 5.3 5.4 5.5	Anschluss vorbereiten Anschließen Einkammergehäuse Zweikammergehäuse Ex-d-ia-Zweikammergehäuse	19 20 21 22 25
5	5.1 5.2 5.3 5.4 5.5 5.6	Anschluss vorbereiten Anschließen Einkammergehäuse Zweikammergehäuse Ex-d-ia-Zweikammergehäuse Zweikammergehäuse mit VEGADIS-Adapter	19 20 21 22 25 26
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7	Anschluss vorbereiten Anschließen Einkammergehäuse Zweikammergehäuse Ex-d-ia-Zweikammergehäuse Zweikammergehäuse mit VEGADIS-Adapter Gehäuse IP66/IP68 (1 bar)	19 20 21 22 25 26 27
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	Anschluss vorbereiten Anschließen Einkammergehäuse Zweikammergehäuse Ex-d-ia-Zweikammergehäuse Zweikammergehäuse mit VEGADIS-Adapter Gehäuse IP66/IP68 (1 bar) Externes Gehäuse	19 20 21 22 25 26 27 27
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	Anschluss vorbereiten Anschließen Einkammergehäuse Zweikammergehäuse Ex-d-ia-Zweikammergehäuse Zweikammergehäuse mit VEGADIS-Adapter Gehäuse IP66/IP68 (1 bar) Externes Gehäuse Anschlussbeispiel	19 20 21 22 25 26 27 27
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	Anschluss vorbereiten Anschließen Einkammergehäuse Zweikammergehäuse Ex-d-ia-Zweikammergehäuse Zweikammergehäuse mit VEGADIS-Adapter Gehäuse IP66/IP68 (1 bar) Externes Gehäuse	19 20 21 22 25 26 27 27
6	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	Anschluss vorbereiten Anschließen Einkammergehäuse Zweikammergehäuse Ex-d-ia-Zweikammergehäuse Zweikammergehäuse mit VEGADIS-Adapter Gehäuse IP66/IP68 (1 bar) Externes Gehäuse Anschlussbeispiel Einschaltphase	19 20 21 22 25 26 27 27 29 29
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	Anschluss vorbereiten Anschließen Einkammergehäuse Zweikammergehäuse Ex-d-ia-Zweikammergehäuse Zweikammergehäuse mit VEGADIS-Adapter Gehäuse IP66/IP68 (1 bar) Externes Gehäuse Anschlussbeispiel Einschaltphase	19 20 21 22 25 26 27 27 29 29
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	Anschluss vorbereiten Anschließen Einkammergehäuse Zweikammergehäuse Ex-d-ia-Zweikammergehäuse Zweikammergehäuse mit VEGADIS-Adapter Gehäuse IP66/IP68 (1 bar) Externes Gehäuse Anschlussbeispiel Einschaltphase	19 20 21 22 25 26 27 27 29 29 30
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 In Be	Anschluss vorbereiten Anschließen Einkammergehäuse Zweikammergehäuse Ex-d-ia-Zweikammergehäuse Zweikammergehäuse mit VEGADIS-Adapter Gehäuse IP66/IP68 (1 bar) Externes Gehäuse Anschlussbeispiel Einschaltphase etrieb nehmen mit dem Anzeige- und Bedienmodul Anzeige- und Bedienmodul einsetzen Bediensystem	19 20 21 22 25 26 27 29 29 30 31
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 In Be	Anschluss vorbereiten Anschließen Einkammergehäuse Zweikammergehäuse Ex-d-ia-Zweikammergehäuse Zweikammergehäuse mit VEGADIS-Adapter Gehäuse IP66/IP68 (1 bar) Externes Gehäuse Anschlussbeispiel Einschaltphase etrieb nehmen mit dem Anzeige- und Bedienmodul Anzeige- und Bedienmodul einsetzen Bediensystem Messwertanzeige	19 20 21 22 25 26 27 29 29 30 31 32
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 In Be 6.1 6.2 6.3	Anschluss vorbereiten Anschließen Einkammergehäuse Zweikammergehäuse Ex-d-ia-Zweikammergehäuse Zweikammergehäuse mit VEGADIS-Adapter Gehäuse IP66/IP68 (1 bar) Externes Gehäuse Anschlussbeispiel Einschaltphase etrieb nehmen mit dem Anzeige- und Bedienmodul Anzeige- und Bedienmodul einsetzen Bediensystem Messwertanzeige Parametrierung - Schnellinbetriebnahme	19 20 21 22 25 26 27 29 29 30 31 32 33
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 In Be 6.1 6.2 6.3 6.4	Anschluss vorbereiten Anschließen Einkammergehäuse Zweikammergehäuse Ex-d-ia-Zweikammergehäuse Ex-d-ia-Zweikammergehäuse Zweikammergehäuse mit VEGADIS-Adapter Gehäuse IP66/IP68 (1 bar) Externes Gehäuse Anschlussbeispiel Einschaltphase etrieb nehmen mit dem Anzeige- und Bedienmodul Anzeige- und Bedienmodul einsetzen Bediensystem Messwertanzeige Parametrierung - Schnellinbetriebnahme Parametrierung - Erweiterte Bedienung	19 20 21 22 25 26 27 29 29 30 31 32 33 33
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 In Be 6.1 6.2 6.3 6.4 6.5	Anschluss vorbereiten Anschließen Einkammergehäuse Zweikammergehäuse Ex-d-ia-Zweikammergehäuse Zweikammergehäuse mit VEGADIS-Adapter Gehäuse IP66/IP68 (1 bar) Externes Gehäuse Anschlussbeispiel Einschaltphase etrieb nehmen mit dem Anzeige- und Bedienmodul Anzeige- und Bedienmodul einsetzen Bediensystem Messwertanzeige Parametrierung - Schnellinbetriebnahme	19 20 21 22 25 26 27 29 29 30 31 32 33 34
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 In Be 6.1 6.2 6.3 6.4 6.5 6.6 6.7	Anschluss vorbereiten Anschließen Einkammergehäuse Zweikammergehäuse Ex-d-ia-Zweikammergehäuse Ex-d-ia-Zweikammergehäuse Exeksiammergehäuse mit VEGADIS-Adapter Gehäuse IP66/IP68 (1 bar) Externes Gehäuse Anschlussbeispiel Einschaltphase Etrieb nehmen mit dem Anzeige- und Bedienmodul Anzeige- und Bedienmodul einsetzen Bediensystem Messwertanzeige Parametrierung - Schnellinbetriebnahme Parametrierung - Erweiterte Bedienung Menüübersicht Parametrierdaten sichern	19 20 21 22 25 26 27 29 29 30 31 32 33 34 46 48
6	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 In Be 6.1 6.2 6.3 6.4 6.5 6.6 6.7	Anschluss vorbereiten Anschließen Einkammergehäuse Zweikammergehäuse Ex-d-ia-Zweikammergehäuse Zweikammergehäuse mit VEGADIS-Adapter Gehäuse IP66/IP68 (1 bar) Externes Gehäuse Anschlussbeispiel Einschaltphase etrieb nehmen mit dem Anzeige- und Bedienmodul Anzeige- und Bedienmodul einsetzen Bediensystem Messwertanzeige Parametrierung - Schnellinbetriebnahme Parametrierung - Erweiterte Bedienung Menüübersicht Parametrierdaten sichern	19 20 21 22 25 26 27 29 29 30 31 32 33 34 46 48
6	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 In Be 6.1 6.2 6.3 6.4 6.5 6.6 6.7	Anschluss vorbereiten Anschließen Einkammergehäuse Zweikammergehäuse Ex-d-ia-Zweikammergehäuse Ex-d-ia-Zweikammergehäuse Exeksiammergehäuse mit VEGADIS-Adapter Gehäuse IP66/IP68 (1 bar) Externes Gehäuse Anschlussbeispiel Einschaltphase Etrieb nehmen mit dem Anzeige- und Bedienmodul Anzeige- und Bedienmodul einsetzen Bediensystem Messwertanzeige Parametrierung - Schnellinbetriebnahme Parametrierung - Erweiterte Bedienung Menüübersicht Parametrierdaten sichern	19 20 21 22 25 26 27 29 29 30 31 32 33 44 46 48

8	In Be	trieb nehmen mit anderen Systemen	51
	8.1	DD-Bedienprogramme	51
	8.2	Field Communicator 375, 475	
9	Diagr	nose, Asset Management und Service	52
	9.1	Instandhalten	52
	9.2	Diagnosespeicher	52
	9.3	Asset-Management-Funktion	53
	9.4	Störungen beseitigen	
	9.5	Prozessbaugruppe bei Ausführung IP68 (25 bar) tauschen	
	9.6	Elektronikeinsatz tauschen	
	9.7	Softwareupdate	
	9.8	Vorgehen im Reparaturfall	59
10	Ausb	auen	60
	10.1	Ausbauschritte	60
	10.2	Entsorgen	60
11	Δnha	ng	61
• •	11.1	Technische Daten	
	11.2	Berechnung der Gesamtabweichung	
	11.3	Praxisbeispiel Praxisbeispiel	
	11.4	Maße	
	11.4		
		Warenzeichen	
		**u:0:1200:1011	01

Sicherheitshinweise für Ex-Bereiche:

Beachten Sie bei Ex-Anwendungen die Ex-spezifischen Sicherheitshinweise. Diese liegen jedem Gerät mit Ex-Zulassung als Dokument bei und sind Bestandteil der Betriebsanleitung.

Redaktionsstand: 2022-04-20

1 Zu diesem Dokument

1.1 Funktion

Die vorliegende Anleitung liefert Ihnen die erforderlichen Informationen für Montage, Anschluss und Inbetriebnahme sowie wichtige Hinweise für Wartung, Störungsbeseitigung, den Austausch von Teilen und die Sicherheit des Anwenders. Lesen Sie diese deshalb vor der Inbetriebnahme und bewahren Sie sie als Produktbestandteil in unmittelbarer Nähe des Gerätes jederzeit zugänglich auf.

1.2 Zielgruppe

Diese Betriebsanleitung richtet sich an ausgebildetes Fachpersonal. Der Inhalt dieser Anleitung muss dem Fachpersonal zugänglich gemacht und umgesetzt werden.

1.3 Verwendete Symbolik

Document ID

Dieses Symbol auf der Titelseite dieser Anleitung weist auf die Document ID hin. Durch Eingabe der Document ID auf www.vega.com kommen Sie zum Dokumenten-Download.

Information, **Hinweis**, **Tipp**: Dieses Symbol kennzeichnet hilfreiche Zusatzinformationen und Tipps für erfolgreiches Arbeiten.

Hinweis: Dieses Symbol kennzeichnet Hinweise zur Vermeidung von Störungen, Fehlfunktionen, Geräte- oder Anlagenschäden.

Vorsicht: Nichtbeachten der mit diesem Symbol gekennzeichneten Informationen kann einen Personenschaden zur Folge haben.

Warnung: Nichtbeachten der mit diesem Symbol gekennzeichneten Informationen kann einen ernsthaften oder tödlichen Personenschaden zur Folge haben.

Gefahr: Nichtbeachten der mit diesem Symbol gekennzeichneten Informationen wird einen ernsthaften oder tödlichen Personenschaden zur Folge haben.

Ex-Anwendungen

Dieses Symbol kennzeichnet besondere Hinweise für Ex-Anwendungen.

Liste

Der vorangestellte Punkt kennzeichnet eine Liste ohne zwingende Reihenfolge.

1 Handlungsfolge

Vorangestellte Zahlen kennzeichnen aufeinander folgende Handlungsschritte.

Entsorgung

Dieses Symbol kennzeichnet besondere Hinweise zur Entsorgung.

2 Zu Ihrer Sicherheit

2.1 Autorisiertes Personal

Sämtliche in dieser Dokumentation beschriebenen Handhabungen dürfen nur durch ausgebildetes und vom Anlagenbetreiber autorisiertes Fachpersonal durchgeführt werden.

Bei Arbeiten am und mit dem Gerät ist immer die erforderliche persönliche Schutzausrüstung zu tragen.

2.2 Bestimmungsgemäße Verwendung

Der Typ VEGABAR 86 ist ein Druckmessumformer zur Füllstand- und Pegelmessung.

Detaillierte Angaben zum Anwendungsbereich finden Sie in Kapitel "Produktbeschreibung".

Die Betriebssicherheit des Gerätes ist nur bei bestimmungsgemäßer Verwendung entsprechend den Angaben in der Betriebsanleitung sowie in den evtl. ergänzenden Anleitungen gegeben.

2.3 Warnung vor Fehlgebrauch

Bei nicht sachgerechter oder nicht bestimmungsgemäßer Verwendung können von diesem Produkt anwendungsspezifische Gefahren ausgehen, so z. B. ein Überlauf des Behälters durch falsche Montage oder Einstellung. Dies kann Sach-, Personen- oder Umweltschäden zur Folge haben. Weiterhin können dadurch die Schutzeigenschaften des Gerätes beeinträchtigt werden.

2.4 Allgemeine Sicherheitshinweise

Das Gerät entspricht dem Stand der Technik unter Beachtung der üblichen Vorschriften und Richtlinien. Es darf nur in technisch einwandfreiem und betriebssicherem Zustand betrieben werden. Der Betreiber ist für den störungsfreien Betrieb des Gerätes verantwortlich. Beim Einsatz in aggressiven oder korrosiven Medien, bei denen eine Fehlfunktion des Gerätes zu einer Gefährdung führen kann, hat sich der Betreiber durch geeignete Maßnahmen von der korrekten Funktion des Gerätes zu überzeugen.

Durch den Anwender sind die Sicherheitshinweise in dieser Betriebsanleitung, die landesspezifischen Installationsstandards sowie die geltenden Sicherheitsbestimmungen und Unfallverhütungsvorschriften zu beachten.

Eingriffe über die in der Betriebsanleitung beschriebenen Handhabungen hinaus dürfen aus Sicherheits- und Gewährleistungsgründen nur durch vom Hersteller autorisiertes Personal vorgenommen werden. Eigenmächtige Umbauten oder Veränderungen sind ausdrücklich untersagt. Aus Sicherheitsgründen darf nur das vom Hersteller benannte Zubehör verwendet werden.

Um Gefährdungen zu vermeiden, sind die auf dem Gerät angebrachten Sicherheitskennzeichen und -hinweise zu beachten.

2.5 EU-Konformität

Das Gerät erfüllt die gesetzlichen Anforderungen der zutreffenden EU-Richtlinien. Mit der CE-Kennzeichnung bestätigen wir die Konformität des Gerätes mit diesen Richtlinien.

Die EU-Konformitätserklärung finden Sie auf unserer Homepage.

2.6 NAMUR-Empfehlungen

Die NAMUR ist die Interessengemeinschaft Automatisierungstechnik in der Prozessindustrie in Deutschland. Die herausgegebenen NAMUR-Empfehlungen gelten als Standards in der Feldinstrumentierung.

Das Gerät erfüllt die Anforderungen folgender NAMUR-Empfehlungen:

- NE 21 Elektromagnetische Verträglichkeit von Betriebsmitteln
- NE 43 Signalpegel für die Ausfallinformation von Messumformern
- NE 53 Kompatibilität von Feldgeräten und Anzeige-/Bedienkomponenten
- NE 107 Selbstüberwachung und Diagnose von Feldgeräten

Weitere Informationen siehe www.namur.de.

2.7 Umwelthinweise

Der Schutz der natürlichen Lebensgrundlagen ist eine der vordringlichsten Aufgaben. Deshalb haben wir ein Umweltmanagementsystem eingeführt mit dem Ziel, den betrieblichen Umweltschutz kontinuierlich zu verbessern. Das Umweltmanagementsystem ist nach DIN EN ISO 14001 zertifiziert.

Helfen Sie uns, diesen Anforderungen zu entsprechen und beachten Sie die Umwelthinweise in dieser Betriebsanleitung:

- Kapitel "Verpackung, Transport und Lagerung"
- Kapitel "Entsorgen"

3 Produktbeschreibung

3.1 Aufbau

Lieferumfang

Der Lieferumfang besteht aus:

- Druckmessumformer VEGABAR 86
- Entlüftungsventile, Verschlussschrauben je nach Ausführung (siehe Kapitel "Maße")

Der weitere Lieferumfang besteht aus:

- Dokumentation
 - Kurz-Betriebsanleitung VEGABAR 86
 - Prüfzertifikat für Druckmessumformer
 - Anleitungen zu optionalen Geräteausstattungen
 - Ex-spezifischen "Sicherheitshinweisen" (bei Ex-Ausführungen)
 - Ggf. weiteren Bescheinigungen

Information:

In dieser Betriebsanleitung werden auch optionale Gerätemerkmale beschrieben. Der jeweilige Lieferumfang ergibt sich aus der Bestellspezifikation.

Geltungsbereich dieser Betriebsanleitung

Die vorliegende Betriebsanleitung gilt für folgende Geräteausführungen:

- Hardware ab 1.0.0
- Software ab 1.3.6

Hinweis:

1

Sie finden die Hard- und Softwareversion des Gerätes wie folgt:

- Auf dem Typschild des Elektronikeinsatzes
- Im Bedienmenü unter "Info"

Typschild

Das Typschild enthält die wichtigsten Daten zur Identifikation und zum Einsatz des Gerätes:

Abb. 1: Aufbau des Typschildes (Beispiel)

- 1 Produktcode
- 2 Feld für Zulassungen
- 3 Technische Daten
- 4 Seriennummer des Gerätes
- 5 QR-Code
- 6 Symbol für Geräteschutzklasse
- 7 ID-Nummern Gerätedokumentation

Seriennummer - Gerätesuche

Das Typschild enthält die Seriennummer des Gerätes. Damit finden Sie über unsere Homepage folgende Daten zum Gerät:

- Produktcode (HTML)
- Lieferdatum (HTML)
- Auftragsspezifische Gerätemerkmale (HTML)
- Betriebsanleitung und Kurz-Betriebsanleitung zum Zeitpunkt der Auslieferung (PDF)
- Prüfzertifikat (PDF) optional

Gehen Sie auf "www.vega.com" und geben Sie im Suchfeld die Seriennummer Ihres Gerätes ein.

Alternativ finden Sie die Daten über Ihr Smartphone:

- VEGA Tools-App aus dem "Apple App Store" oder dem "Google Play Store" herunterladen
- QR-Code auf dem Typschild des Gerätes scannen oder
- Seriennummer manuell in die App eingeben

3.2 Arbeitsweise

Anwendungsbereich

Der VEGABAR 86 ist ein Hängedruckmessumformer zur Füllstandmessung in Brunnen, Becken und offenen Behältern. Die Flexibilität durch verschiedene Kabel- und Rohrausführungen bietet die Möglichkeit, das Gerät in einer Vielzahl von Anwendungen einzusetzen.

Messmedien

Messmedien sind Flüssigkeiten.

Je nach Geräteausführung und Messanordnung dürfen die Messmedien auch viskos sein oder abrasive Inhaltsstoffe haben.

Messgrößen

Der VEGABAR 86 eignet sich für die Messung folgender Prozessgrößen:

Füllstand

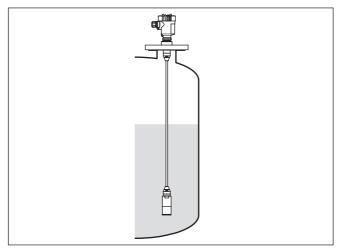


Abb. 2: Füllstandmessung mit VEGABAR 86

Elektronischer Differenzdruck

Je nach Ausführung eignet sich der VEGABAR 86 auch zur elektronischen Differenzdruckmessung. Hierzu wird das Gerät mit einem Secondary Device kombiniert.

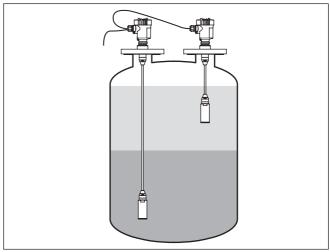


Abb. 3: Elektronische Differenzdruckmessung über eine Primary-/Secondary-Kombination

Detaillierte Hinweise hierzu finden Sie in der Betriebsanleitung des jeweiligen Secondary Device.

Messsystem Druck

Sensorelement ist die CERTEC®-Messzelle mit robuster Keramikmembran. Der Prozessdruck lenkt die Keramikmembran aus und bewirkt so eine Kapazitätsänderung in der Messzelle. Diese wird in ein elektrisches Signal umgewandelt und als Messwert über das Ausgangssignal ausgegeben.

Die Messzelle wird in zwei Baugrößen eingesetzt:

- CERTEC® (ø 28 mm) bei Messwertaufnehmer 32 mm
- Mini-CERTEC® (ø 17,5 mm) bei Messwertaufnehmer 22 mm

Messsystem Temperatur

Ein Temperatursensor in der Keramikmembran der CERTEC®- bzw. auf dem Keramikgrundkörper der Mini-CERTEC®-Messzelle erfasst die aktuelle Prozesstemperatur. Der Temperaturwert wird ausgegeben über:

- Das Anzeige- und Bedienmodul
- Den Stromausgang oder den zusätzlichen Stromausgang
- Den digitalen Signalausgang

Auch extreme Sprünge der Prozesstemperatur werden bei der CERTEC®-Messzelle sofort erfasst. Die Werte in der Keramikmembran werden mit denen auf dem Keramikgrundkörper verglichen. Die intelligente Sensorelektronik kompensiert innerhalb weniger Messzyklen sonst unvermeidliche Messabweichungen durch Temperaturschocks im Bereich. Diese verursachen je nach eingestellter

Dämpfung nur noch geringfügige und kurzzeitige Änderungen des Ausgangssignals.¹⁾

Druckarten

Je nach gewählter Druckart ist die Messzelle unterschiedlich aufgebaut

Relativdruck: die Messzelle ist zur Atmosphäre offen. Der Umgebungsdruck wird in der Messzelle erfasst und kompensiert. Er hat somit auf den Messwert keinen Einfluss.

Absolutdruck: die Messzelle enthält Vakuum und ist gekapselt. Der Umgebungsdruck wird nicht kompensiert und beeinflusst somit den Messwert

Relativdruck klimakompensiert: die Messzelle ist evakuiert und gekapselt. Der Umgebungsdruck wird über einen Referenzsensor in der Elektronik erfasst und kompensiert. Er hat somit keinen Einfluss auf den Messwert.

Dichtungskonzept

Die folgende Darstellung zeigt den Einbau der keramischen Messzelle in den Messwertaufnehmer und das Dichtungskonzept.

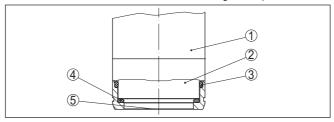


Abb. 4: Frontbündiger Einbau der keramischen Messzelle mit Doppeldichtung

- 1 Gehäuse Messwertaufnehmer
- 2 Messzelle
- 3 Seitliche Dichtung für Messzelle
- 4 Zusätzliche, vorn liegende Dichtung für Messzelle
- 5 Membrar

3.3 Verpackung, Transport und Lagerung

Verpackung

Ihr Gerät wurde auf dem Weg zum Einsatzort durch eine Verpackung geschützt. Dabei sind die üblichen Transportbeanspruchungen durch eine Prüfung in Anlehnung an ISO 4180 abgesichert.

Die Geräteverpackung besteht aus Karton, ist umweltverträglich und wieder verwertbar. Bei Sonderausführungen wird zusätzlich PE-Schaum oder PE-Folie verwendet. Entsorgen Sie das anfallende Verpackungsmaterial über spezialisierte Recyclingbetriebe.

Transport

Der Transport muss unter Berücksichtigung der Hinweise auf der Transportverpackung erfolgen. Nichtbeachtung kann Schäden am Gerät zur Folge haben.

¹⁾ Bei Temperaturen größer 100 °C wird die Funktion automatisch deaktiviert, bei Temperaturen kleiner 95 °C automatisch erneut aktiviert.

Transportinspektion

Die Lieferung ist bei Erhalt unverzüglich auf Vollständigkeit und eventuelle Transportschäden zu untersuchen. Festgestellte Transportschäden oder verdeckte Mängel sind entsprechend zu behandeln.

Lagerung

Die Packstücke sind bis zur Montage verschlossen und unter Beachtung der außen angebrachten Aufstell- und Lagermarkierungen aufzubewahren.

Packstücke, sofern nicht anders angegeben, nur unter folgenden Bedingungen lagern:

- Nicht im Freien aufbewahren.
- Trocken und staubfrei lagern
- Keinen aggressiven Medien aussetzen
- Vor Sonneneinstrahlung schützen
- Mechanische Erschütterungen vermeiden

Lager- und Transporttemperatur

- Lager- und Transporttemperatur siehe Kapitel "Anhang Technische Daten - Umgebungsbedingungen"
- Relative Luftfeuchte 20 ... 85 %

Heben und Tragen

Bei Gerätegewichten über 18 kg (39.68 lbs) sind zum Heben und Tragen dafür geeignete und zugelassene Vorrichtungen einzusetzen.

3.4 Zubehör

Die Anleitungen zu den aufgeführten Zubehörteilen finden Sie im Downloadbereich auf unserer Homepage.

Anzeige- und Bedienmodul

Das Anzeige- und Bedienmodul dient zur Messwertanzeige, Bedienung und Diagnose.

Das integrierte Bluetooth-Modul (optional) ermöglicht die drahtlose Bedienung über Standard-Bediengeräte.

VEGACONNECT

Der Schnittstellenadapter VEGACONNECT ermöglicht die Anbindung kommunikationsfähiger Geräte an die USB-Schnittstelle eines PCs.

Secondary-Sensoren

Secondary-Sensoren der Serie VEGABAR 80 ermöglichen in Verbindung mit dem VEGABAR 86 eine elektronische Differenzdruckmessung.

VEGADIS 81

Das VEGADIS 81 ist eine externe Anzeige- und Bedieneinheit für VEGA-plics®-Sensoren.

VEGADIS-Adapter

Der VEGADIS-Adapter ist ein Zubehörteil für Sensoren mit Zweikammergehäusen. Er ermöglicht den Anschluss des VEGADIS 81 über einen M12 x 1-Stecker am Sensorgehäuse.

VEGADIS 82

Das VEGADIS 82 ist geeignet zur Messwertanzeige und Bedienung von Sensoren mit HART-Protokoll. Es wird in die 4 ... 20 mA/HART-Signalleitung eingeschleift.

45039-DE-220502

PLICSMOBILE T81 Das PLICSMOBILE T81 ist eine externe GSM/GPRS/UMTS-Funkein-

heit zur Übertragung von Messwerten und zur Fernparametrierung

von HART-Sensoren.

PLICSMOBILE 81 Das PLICSMOBILE 81 ist eine interne GSM/GPRS/UMTS-Funkein-

heit für HART-Sensoren zur Übertragung von Messwerten und zur

Fernparametrierung.

Überspannungsschutz Der Überspannungsschutz B81-35 wird an Stelle der Anschlussklem-

men im Ein- oder Zweikammergehäuse eingesetzt.

Schutzhaube Die Schutzhaube schützt das Sensorgehäuse vor Verschmutzung

und starker Erwärmung durch Sonneneinstrahlung.

Flansche Gewindeflansche stehen in verschiedenen Ausführungen nach

folgenden Standards zur Verfügung: DIN 2501, EN 1092-1, BS 10,

ASME B 16.5, JIS B 2210-1984, GOST 12821-80.

Einschweißstutzen, Gewinde- und Hygienead-

Gewinde- und Hygienea apter Einschweißstutzen dienen zum Anschluss der Geräte an den Prozess.

Gewinde- und Hygieneadapter ermöglichen die einfache Adaption von Geräten mit Standard-Gewindeanschluss an prozessseitige

Hygieneanschlüsse.

4 Montieren

4.1 Allgemeine Hinweise

Prozessbedingungen

Hinweis:

Das Gerät darf aus Sicherheitsgründen nur innerhalb der zulässigen Prozessbedingungen betrieben werden. Die Angaben dazu finden Sie in Kapitel "*Technische Daten*" der Betriebsanleitung bzw. auf dem Typschild.

Stellen Sie deshalb vor Montage sicher, dass sämtliche im Prozess befindlichen Teile des Gerätes für die auftretenden Prozessbedingungen geeignet sind.

Dazu zählen insbesondere:

- Messaktiver Teil
- Prozessanschluss
- Prozessdichtung

Prozessbedingungen sind insbesondere:

- Prozessdruck
- Prozesstemperatur
- Chemische Eigenschaften der Medien
- Abrasion und mechanische Einwirkungen

Schutz vor Feuchtigkeit

Schützen Sie Ihr Gerät durch folgende Maßnahmen gegen das Eindringen von Feuchtigkeit:

- Passendes Anschlusskabel verwenden (siehe Kapitel "An die Spannungsversorgung anschließen")
- Kabelverschraubung bzw. Steckverbinder fest anziehen
- Anschlusskabel vor Kabelverschraubung bzw. Steckverbinder nach unten führen

Dies gilt vor allem bei Montage im Freien, in Räumen, in denen mit Feuchtigkeit zu rechnen ist (z. B. durch Reinigungsprozesse) und an gekühlten bzw. beheizten Behältern.

Hinweis:

Stellen Sie sicher, dass während der Installation oder Wartung keine Feuchtigkeit oder Verschmutzung in das Innere des Gerätes gelangen kann.

Stellen Sie zur Erhaltung der Geräteschutzart sicher, dass der Gehäusedeckel im Betrieb geschlossen und ggfs. gesichert ist.

Einschrauben

Geräte mit Gewindeanschluss werden mit einem passendem Schraubenschlüssel über den Sechskant am Prozessanschluss eingeschraubt.

Schlüsselweite siehe Kapitel "Maße".

Warnung:

Das Gehäuse oder der elektrische Anschluss dürfen nicht zum Einschrauben verwendet werden! Das Festziehen kann Schäden.

z. B. je nach Geräteausführung an der Drehmechanik des Gehäuses verursachen.

Vibrationen

Vermeiden Sie Schäden am Gerät durch seitliche Kräfte, z. B. durch Vibrationen. Es wird deshalb empfohlen, Geräte mit Prozessanschluss Gewinde G½ aus Kunststoff an der Einsatzstelle über einen geeigneten Messgerätehalter abzusichern.

Bei starken Vibrationen an der Einsatzstelle sollte die Geräteausführung mit externem Gehäuse verwendet werden. Siehe Kapitel "Externes Gehäuse".

Zulässiger Prozessdruck (MWP) - Gerät

Der zulässige Prozessdruckbereich wird mit "MWP" (Maximum Working Pressure) auf dem Typschild angegeben, siehe Kapitel "*Aufbau*". Die Angabe gilt auch, wenn auftragsbezogen eine Messzelle mit höherem Messbereich als der zulässige Druckbereich des Prozessanschlusses eingebaut ist.

Darüber hinaus kann ein Temperaturderating des Prozessanschlusses, z. B. bei Flanschen, den zulässigen Prozessdruckbereich entsprechend der jeweiligen Norm einschränken.

Zulässiger Prozessdruck (MWP) - Montagezubehör

Der zulässige Prozessdruckbereich wird auf dem Typschild angegeben. Das Gerät darf mit diesen Drücken nur betrieben werden, wenn das verwendete Montagezubehör diese Werte ebenfalls erfüllt. Stellen Sie dies durch geeignete Flansche, Einschweißstutzen, Spannringe bei Clamp-Anschlüssen, Dichtungen etc. sicher.

Temperaturgrenzen

Höhere Prozesstemperaturen bedeuten oft auch höhere Umgebungstemperaturen. Stellen Sie sicher, dass die in Kapitel "*Technische Daten*" angegebenen Temperaturobergrenzen für die Umgebung von Elektronikgehäuse und Anschlusskabel nicht überschritten werden.



Abb. 5: Temperaturbereiche

- 1 Prozesstemperatur
- 2 Umgebungstemperatur

Transport- und Montageschutz

Der VEGABAR 86 wird je nach Messwertaufnehmer mit einer Schutzkappe oder einem Transport- und Montageschutz geliefert.

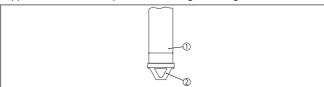


Abb. 6: VEGABAR 86, Transport- und Montageschutz

- 1 Messwertaufnehmer
- 2 Transport- und Montageschutz

Entfernen Sie diese nach Montage und vor Inbetriebnahme des Gerätes.

Bei gering verschmutzten Messmedien kann der Transport- und Montageschutz als Aufprallschutz im Betrieb am Gerät bleiben.

4.2 Belüftung und Druckausgleich

Filterelement - Funktion

Das Filterelement im Elektronikgehäuse hat folgende Funktionen:

- Belüftung Elektronikgehäuse
- Atmosphärischer Druckausgleich (bei Relativdruckmessbereichen)

Vorsicht:

Das Filterelelement bewirkt einen zeitverzögerten Druckausgleich. Beim schnellen Öffnen/Schließen des Gehäusedeckels kann sich deshalb der Messwert für ca. 5 s um bis zu 15 mbar ändern.

Für eine wirksame Belüftung muss das Filterelement immer frei von Ablagerungen sein. Drehen Sie deshalb bei waagerechter Montage das Gehäuse so, dass das Filterelement nach unten zeigt. Es ist damit besser vor Ablagerungen geschützt.

Vorsicht:

Verwenden Sie zur Reinigung keinen Hochdruckreiniger. Das Filterelement könnte beschädigt werden und Feuchtigkeit ins Gehäuse eindringen.

In den folgenden Abschnitten wird beschrieben, wie das Filterelement bei den einzelnen Geräteausführungen angeordnet ist.

Filterelement - Position

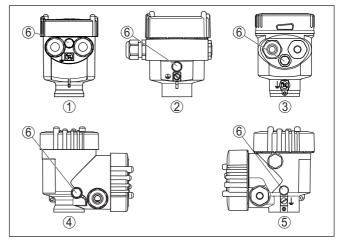


Abb. 7: Position des Filterelementes

- 1 Kunststoff-, Edelstahl-Einkammer (Feinguss)
- 2 Aluminium-Einkammer
- 3 Edelstahl-Einkammer (elektropoliert)
- 4 Kunststoff-Zweikammer
- 5 Aluminium-, Edelstahl-Zweikammer (Feinguss)
- 6 Filterelement

Bei folgenden Geräten ist statt des Filterelementes ein Blindstopfen eingebaut:

- Geräte in Schutzart IP66/IP68 (1 bar) Belüftung über Kapillare im fest angeschlossenen Kabel
- Geräte mit Absolutdruck

Filterelement - Position Ex-d-Ausführung

→ Drehen Sie den Metallring so, dass das Filterelement nach Einbau des Gerätes nach unten zeigt. Es ist damit besser vor Ablagerungen geschützt.

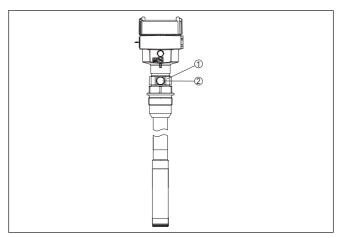


Abb. 8: Position des Filterelementes - Ex-d-Ausführung

- 1 Drehbarer Metallring
- 2 Filterelement

Bei Absolutdruckmessbereichen ist statt des Filterelementes ein Blindstopfen eingebaut.

Filterelement - Position Second Line of Defense

Die Second Line of Defense (SLOD) ist eine zweite Ebene der Prozessabtrennung in Form einer gasdichten Durchführung im Gehäusehals, die ein Eindringen von Medien in das Gehäuse verhindert.

Bei diesen Geräten ist die Prozessbaugruppe komplett gekapselt. Es wird eine Absolutdruckmesszelle eingesetzt, so dass keine Belüftung erforderlich ist.

Bei Relativdruckmessbereichen wird der Umgebungsdruck durch einen Referenzsensor in der Elektronik erfasst und kompensiert.

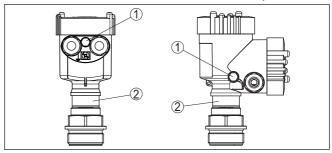


Abb. 9: Position des Filterelementes - gasdichte Durchführung

- 1 Filterelement
- 2 Gasdichte Durchführung

Filterelement - Position IP69K-Ausführung

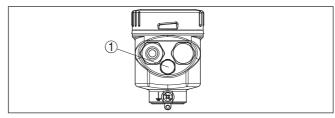


Abb. 10: Position des Filterelementes - IP69K-Ausführung

1 Filterelement

Bei Geräten mit Absolutdruck ist statt des Filterelementes ein Blindstopfen eingebaut.

4.3 Füllstandmessung

Messanordnung

Beachten Sie folgende Hinweise zur Messanordnung:

- Gerät entfernt von Befüllstrom und Entleerung montieren
- Gerät geschützt vor Druckstößen eines Rührwerkes montieren

4.4 Externes Gehäuse

Aufbau

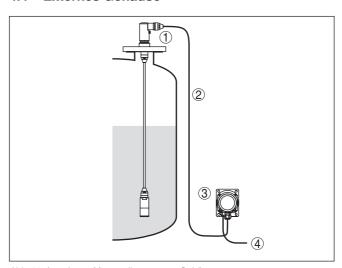


Abb. 11: Anordnung Messstelle, externes Gehäuse

- 1 Sensor
- 2 Verbindungsleitung Sensor, externes Gehäuse
- 3 Externes Ğehäuse
- 4 Signalleitung

5 An die Spannungsversorgung anschließen

Sicherheitshinweise

5.1 Anschluss vorbereiten

Beachten Sie grundsätzlich folgende Sicherheitshinweise:

- Elektrischen Anschluss nur durch ausgebildetes und vom Anlagenbetreiber autorisiertes Fachpersonal durchführen
- Falls Überspannungen zu erwarten sind, Überspannungsschutzgeräte installieren

Warnung:

Nur in spannungslosem Zustand anschließen bzw. abklemmen.

Spannungsversorgung

Die Spannungsversorgung und das Stromsignal erfolgen über dasselbe zweiadrige Anschlusskabel. Die Betriebsspannung kann sich je nach Geräteausführung unterscheiden.

Die Daten für die Spannungsversorgung finden Sie in Kapitel "*Technische Daten*".

Sorgen Sie für eine sichere Trennung des Versorgungskreises von den Netzstromkreisen nach DIN EN 61140 VDE 0140-1.

Versorgen Sie das Gerät über einen energiebegrenzten Stromkreis nach IEC 61010-1. z. B. über ein Netzteil nach Class 2.

Berücksichtigen Sie folgende zusätzliche Einflüsse für die Betriebsspannung:

- Geringere Ausgangsspannung des Speisegerätes unter Nennlast (z. B. bei einem Sensorstrom von 20,5 mA oder 22 mA bei Ausfallsignal)
- Einfluss weiterer Geräte im Stromkreis (siehe Bürdenwerte in Kapitel "Technische Daten")

Anschlusskabel

Das Gerät wird mit handelsüblichem zweiadrigem Kabel ohne Abschirmung angeschlossen. Falls elektromagnetische Einstreuungen zu erwarten sind, die über den Prüfwerten der EN 61326-1 für industrielle Bereiche liegen, sollte abgeschirmtes Kabel verwendet werden.

Verwenden Sie Kabel mit rundem Querschnitt bei Geräten mit Gehäuse und Kabelverschraubung. Verwenden Sie eine zum Kabeldurchmesser passende Kabelverschraubung, um die Dichtwirkung der Kabelverschraubung (IP-Schutzart) sicher zu stellen.

Im HART-Multidropbetrieb empfehlen wir, generell abgeschirmtes Kabel zu verwenden.

Kabelschirmung und Erdung

Wenn abgeschirmtes Kabel erforderlich ist, empfehlen wir, die Kabelschirmung beidseitig auf Erdpotenzial zu legen. Im Sensor sollte die Kabelschirmung direkt an die innere Erdungsklemme angeschlossen werden. Die äußere Erdungsklemme am Gehäuse muss niederimpedant mit dem Erdpotenzial verbunden sein.

Bei Ex-Anlagen erfolgt die Erdung gemäß den Errichtungsvorschriften.

Bei Galvanikanlagen sowie bei Anlagen für kathodischen Korrosionsschutz ist zu berücksichtigen, dass erhebliche Potenzialunterschiede bestehen. Dies kann bei beidseitiger Schirmerdung zu unzulässig hohen Schirmströmen führen.

•

Hinweis:

Die metallischen Teile des Gerätes (Prozessanschluss, Messwertaufnehmer, Hüllrohr etc.) sind leitend mit der inneren und äußeren Erdungsklemme am Gehäuse verbunden. Diese Verbindung besteht entweder direkt metallisch oder bei Geräten mit externer Elektronik über die Abschirmung der speziellen Verbindungsleitung.

Angaben zu den Potenzialverbindungen innerhalb des Gerätes finden Sie in Kapitel "*Technische Daten*".

Kabelverschraubungen

Metrische Gewinde:

Bei Gerätegehäusen mit metrischen Gewinden sind die Kabelverschraubungen werkseitig eingeschraubt. Sie sind durch Kunststoffstopfen als Transportschutz verschlossen.

Hinweis:

Sie müssen diese Stopfen vor dem elektrischen Anschluss entfernen.

NPT-Gewinde:

Bei Gerätegehäusen mit selbstdichtenden NPT-Gewinden können die Kabelverschraubungen nicht werkseitig eingeschraubt werden. Die freien Öffnungen der Kabeleinführungen sind deshalb als Transportschutz mit roten Staubschutzkappen verschlossen.

Hinweis

Sie müssen diese Schutzkappen vor der Inbetriebnahme durch zugelassene Kabelverschraubungen ersetzen oder mit geeigneten Blindstopfen verschließen.

Beim Kunststoffgehäuse muss die NPT-Kabelverschraubung bzw. das Conduit-Stahlrohr ohne Fett in den Gewindeeinsatz geschraubt werden.

Maximales Anzugsmoment für alle Gehäuse siehe Kapitel "Technische Daten".

5.2 Anschließen

Anschlusstechnik

Der Anschluss der Spannungsversorgung und des Signalausganges erfolgt über Federkraftklemmen im Gehäuse.

Die Verbindung zum Anzeige- und Bedienmodul bzw. zum Schnittstellenadapter erfolgt über Kontaktstifte im Gehäuse.

Information:

Der Klemmenblock ist steckbar und kann von der Elektronik abgezogen werden. Hierzu Klemmenblock mit einem kleinen Schraubendreher anheben und herausziehen. Beim Wiederaufstecken muss er hörbar einrasten.

Anschlussschritte

Gehen Sie wie folgt vor:

Gehäusedeckel abschrauben.

- Evtl. vorhandenes Anzeige- und Bedienmodul durch leichtes
 Drehen nach links herausnehmen
- 3. Überwurfmutter der Kabelverschraubung lösen und Verschlussstopfen herausnehmen
- Anschlusskabel ca. 10 cm (4 in) abmanteln, Aderenden ca. 1 cm (0.4 in) abisolieren
- 5. Kabel durch die Kabelverschraubung in den Sensor schieben

Abb. 12: Anschlussschritte 5 und 6

- 1 Einkammergehäuse
- 2 Zweikammergehäuse
- 6. Aderenden nach Anschlussplan in die Klemmen stecken

Hinweis:

Feste Adern sowie flexible Adern mit Aderendhülsen werden direkt in die Klemmenöffnungen gesteckt. Bei flexiblen Adern ohne Endhülse mit einem kleinen Schraubendreher oben auf die Klemme drücken, die Klemmenöffnung wird freigegeben. Durch Lösen des Schraubendrehers werden die Klemmen wieder geschlossen.

- Korrekten Sitz der Leitungen in den Klemmen durch leichtes Ziehen pr
 üfen
- Abschirmung an die innere Erdungsklemme anschließen, die äußere Erdungsklemme mit dem Potenzialausgleich verbinden
- Überwurfmutter der Kabelverschraubung fest anziehen. Der Dichtring muss das Kabel komplett umschließen
- 10. Evtl. vorhandenes Anzeige- und Bedienmodul wieder aufsetzen
- 11. Gehäusedeckel verschrauben

Der elektrische Anschluss ist somit fertig gestellt.

5.3 Einkammergehäuse

Die nachfolgende Abbildung gilt für die Nicht-Ex-, die Ex-ia- und die Ex-d-Ausführung.

Elektronik- und Anschlussraum

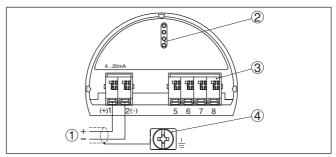


Abb. 13: Elektronik- und Anschlussraum - Einkammergehäuse

- 1 Spannungsversorgung, Signalausgang
- 2 Für Anzeige- und Bedienmodul bzw. Schnittstellenadapter
- 3 Für externe Anzeige- und Bedieneinheit bzw. Secondary-Sensor
- 4 Erdungsklemme zum Anschluss des Kabelschirms

5.4 Zweikammergehäuse

Die nachfolgenden Abbildungen gelten sowohl für die Nicht-Ex-, als auch für die Ex-ia-Ausführung.

Elektronikraum

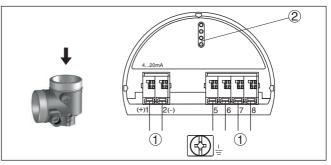


Abb. 14: Elektronikraum - Zweikammergehäuse

- 1 Interne Verbindung zum Anschlussraum
- 2 Für Anzeige- und Bedienmodul bzw. Schnittstellenadapter

Anschlussraum

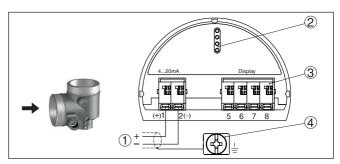


Abb. 15: Anschlussraum - Zweikammergehäuse

- Spannungsversorgung, Signalausgang
- 2 Für Anzeige- und Bedienmodul bzw. Schnittstellenadapter
- 3 Für externe Anzeige- und Bedieneinheit
- 4 Erdungsklemme zum Anschluss des Kabelschirms

licher Stromausgang

Zusatzelektronik - Zusätz- Um einen zweiten Messwert zur Verfügung zu stellen, können Sie die Zusatzelektronik "Zusätzlicher Stromausgang" verwenden.

Beide Stromausgänge sind passiv und müssen versorgt werden.

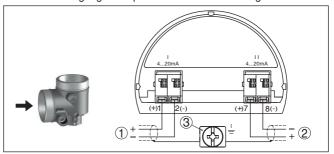


Abb. 16: Anschlussraum Zweikammergehäuse, Zusatzelektronik "Zusätzlicher Stromausgang"

- 1 Erster Stromausgang (I) Spannungsversorgung und Signalausgang Sensor (HART)
- 2 Zusätzlicher Stromausgang (II) Spannungsversorgung und Signalausgang (ohne HART)
- 3 Erdungsklemme zum Anschluss des Kabelschirms

Anschlussraum - Funkmodul PLICSMOBILE 81

Abb. 17: Anschlussraum - Funkmodul PLICSMOBILE 81

1 Spannungsversorgung

Detaillierte Informationen zum Anschluss finden Sie in der Betriebsanleitung "PLICSMOBILE".

Anschlussraum - Funkmodul PLICSMOBILE 81 und M12 x 1-Stecker

Bei dieser Konfiguration wird ein weiterer Sensor über den M12 x 1-Stecker angeschlossen und ebenfalls über das PLICSMOBILE versorgt. Die Sensoren müssen dabei im HART-Multidrop betrieben werden.

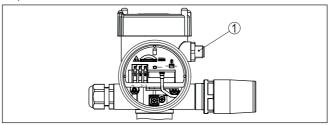


Abb. 18: Sensor mit Funkmodul PLICSMOBILE 81 und M12 x 1-Stecker

1 M12 x 1-Steckverbinder zum Anschluss eines weiteren Sensors

Anschlussplan - Funkmodul PLICSMOBILE 81 und M12 x 1-Stecker

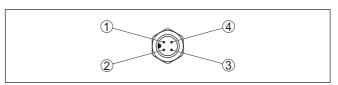


Abb. 19: Sicht auf den Steckverbinder

Kontaktstift	Klemme Elektronikeinsatz weiterer Sensor	Funktion/Polarität
1	Klemme 1	Versorgung/Plus (+)
2	-	nicht verwenden
3	Klemme 2	Versorgung/Minus (-)
4	-	nicht verwenden

Anschlussbeispiel - Funkmodul PLICSMOBILE 81 und plics®-Sensor über VEGA-Sensorverbindungskabel

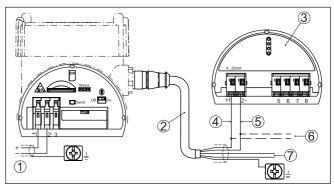


Abb. 20: Anschluss Spannungsversorgung und plics®-Sensor

- 1 Spannungsversorgung PLICSMOBILE T81 und angeschlossene Sensoren
- 2 Sensorverbindungskabel
- 3 HART-Sensor aus der plics®-Serie
- 4 Braunes Kabel (+) für Sensorversorgung/HART-Kommunikation
- 5 Blaues Kabel (-) für Sensorversorgung/HART-Kommunikation
- 6 Anschluss weiterer HART-Sensoren
- 7 Unbenutzte Adern, die isoliert werden müssen (bei Ex-Ausführung nicht vorhanden)

5.5 Ex-d-ia-Zweikammergehäuse

Elektronikraum

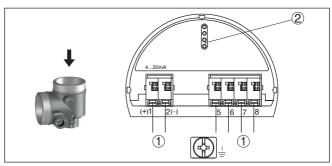


Abb. 21: Elektronikraum - Zweikammergehäuse

- 1 Interne Verbindung zum Anschlussraum
- 2 Für Anzeige- und Bedienmodul bzw. Schnittstellenadapter

Anschlussraum

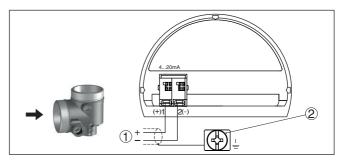


Abb. 22: Anschlussraum - Ex-d-ia-Zweikammergehäuse

- 1 Spannungsversorgung, Signalausgang
- 2 Erdungsklemme zum Anschluss des Kabelschirms

5.6 Zweikammergehäuse mit VEGADIS-Adapter

Elektronikraum

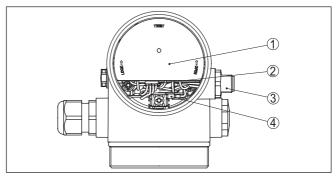


Abb. 23: Sicht auf den Elektronikraum mit VEGADIS-Adapter zum Anschluss der externen Anzeige- und Bedieneinheit

- 1 VEGADIS-Adapter
- 2 Interne Steckverbindung
- 3 M12 x 1-Steckverbinder

Belegung des Steckverbinders

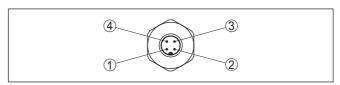


Abb. 24: Sicht auf den M12 x 1-Steckverbinder

- 1 Pin 1
- 2 Pin 2
- 3 Pin 3
- 4 Pin 4

Kontaktstift	Farbe Verbindungsleitung im Sensor	Klemme Elektronik- einsatz
Pin 1	Braun	5
Pin 2	Weiß	6
Pin 3	Blau	7
Pin 4	Schwarz	8

5.7 Gehäuse IP66/IP68 (1 bar)

Aderbelegung Anschlusskabel

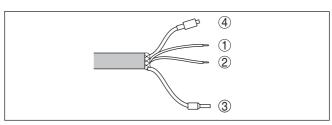


Abb. 25: Aderbelegung Anschlusskabel

- 1 Braun (+): zur Spannungsversorgung bzw. zum Auswertsystem
- 2 Blau (-): zur Spannungsversorgung bzw. zum Auswertsystem
- 3 Abschirmung
- 4 Druckausgleichskapillare mit Filterelement

5.8 Externes Gehäuse

Klemmraum Gehäusesockel

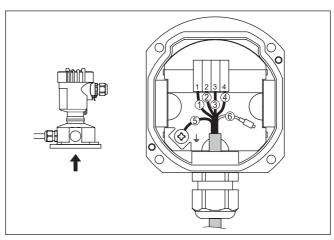


Abb. 26: Anschluss der Prozessbaugruppe im Gehäusesockel

- 1 Gelb
- 2 Weiß
- 3 Rot
- 4 Schwarz
- 5 Abschirmung
- 6 Druckausgleichskapillare

Elektronik- und Anschlussraum für Versorgung

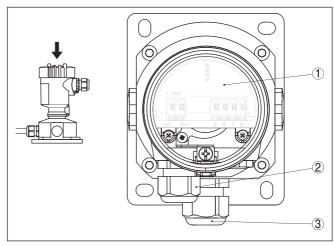


Abb. 27: Elektronik- und Anschlussraum

- 1 Elektronikeinsatz
- 2 Kabelverschraubung für die Spannungsversorgung
- 3 Kabelverschraubung für Anschlusskabel Messwertaufnehmer

Elektronik- und Anschlussraum

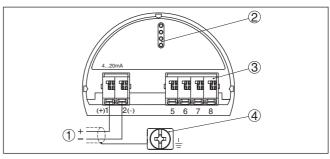


Abb. 28: Elektronik- und Anschlussraum - Einkammergehäuse

- 1 Spannungsversorgung, Signalausgang
- 2 Für Anzeige- und Bedienmodul bzw. Schnittstellenadapter
- 3 Für externe Anzeige- und Bedieneinheit bzw. Secondary-Sensor
- 4 Erdungsklemme zum Anschluss des Kabelschirms

5.9 Anschlussbeispiel

Anschlussbeispiel zusätzlicher Stromausgang

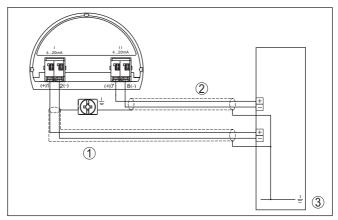


Abb. 29: Anschlussbeispiel VEGABAR 86 zusätzlicher Stromausgang

- 1 Versorgungs- und Signalstromkreis Sensor
- 2 Signalstromkreis zusätzlicher Stromausgang
- 3 Eingangskarte SPS

Sensor	Stromkreis	Eingangskarte SPS
Klemme 1 (+) pas- siv	Versorgungs- und Signal- stromkreis Sensor	Eingang 1 Klemme (+) aktiv
Klemme 2 (-) passiv	Versorgungs- und Signal- stromkreis Sensor	Eingang 1 Klemme (-) aktiv
Klemme 7 (+) pas- siv	Signalstromkreis zusätzli- cher Stromausgang	Eingang 2 Klemme (+) aktiv
Klemme 8 (-) passiv	Signalstromkreis zusätzli- cher Stromausgang	Eingang 2 Klemme (-) aktiv

5.10 Einschaltphase

Nach dem Anschluss des Gerätes an die Spannungsversorgung bzw. nach Spannungswiederkehr führt das Gerät einen Selbsttest durch:

- Interne Prüfung der Elektronik
- · Anzeige einer Statusmeldung auf Display bzw. PC
- Ausgangssignal springt auf den eingestellten Störstrom

Danach wird der aktuelle Messwert auf der Signalleitung ausgegeben. Der Wert berücksichtigt bereits durchgeführte Einstellungen, z. B. den Werksabgleich.

6 In Betrieb nehmen mit dem Anzeige- und Bedienmodul

6.1 Anzeige- und Bedienmodul einsetzen

Das Anzeige- und Bedienmodul kann jederzeit in den Sensor eingesetzt und wieder entfernt werden. Dabei sind vier Positionen im 90°-Versatz wählbar. Eine Unterbrechung der Spannungsversorgung ist hierzu nicht erforderlich.

Gehen Sie wie folgt vor:

- 1. Gehäusedeckel abschrauben
- Anzeige- und Bedienmodul in die gewünschte Position auf die Elektronik setzen und nach rechts bis zum Einrasten drehen
- 3. Gehäusedeckel mit Sichtfenster fest verschrauben

Der Ausbau erfolgt sinngemäß umgekehrt.

Das Anzeige- und Bedienmodul wird vom Sensor versorgt, ein weiterer Anschluss ist nicht erforderlich.

Abb. 30: Einsetzen des Anzeige- und Bedienmoduls beim Einkammergehäuse im Elektronikraum

Abb. 31: Einsetzen des Anzeige- und Bedienmoduls beim Zweikammergehäuse

- 1 Im Elektronikraum
- 2 Im Anschlussraum

Hinweis:

Falls Sie das Gerät mit einem Anzeige- und Bedienmodul zur ständigen Messwertanzeige nachrüsten wollen, ist ein erhöhter Deckel mit Sichtfenster erforderlich.

6.2 Bediensystem

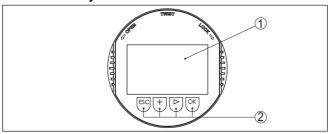


Abb. 32: Anzeige- und Bedienelemente

- 1 LC-Display
- 2 Bedientasten

Tastenfunktionen

[OK]-Taste:

- In die Menüübersicht wechseln
- Ausgewähltes Menü bestätigen
- Parameter editieren
- Wert speichern

[->]-Taste:

- Darstellung Messwert wechseln
- Listeneintrag auswählen
- Menüpunkte auswählen
- Editierposition wählen

[+]-Taste:

Wert eines Parameters verändern

- [ESC]-Taste:
 - Eingabe abbrechen
 - In übergeordnetes Menü zurückspringen

Bediensystem

Sie bedienen das Gerät über die vier Tasten des Anzeige- und Bedienmoduls. Auf dem LC-Display werden die einzelnen Menüpunkte angezeigt. Die Funktion der einzelnen Tasten finden Sie in der vorhergehenden Darstellung.

Zeitfunktionen

Bei einmaligem Betätigen der [+]- und [->]-Tasten ändert sich der editierte Wert bzw. der Cursor um eine Stelle. Bei Betätigen länger als 1 s erfolgt die Änderung fortlaufend.

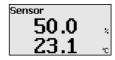
Gleichzeitiges Betätigen der **[OK]**- und **[ESC]**-Tasten für mehr als 5 s bewirkt einen Rücksprung ins Grundmenü. Dabei wird die Menüsprache auf "Englisch" umgeschaltet.

Ca. 60 Minuten nach der letzten Tastenbetätigung wird ein automatischer Rücksprung in die Messwertanzeige ausgelöst. Dabei gehen die noch nicht mit *[OK]* bestätigten Werte verloren.

6.3 Messwertanzeige

Messwertanzeige

Mit der Taste [->] können Sie zwischen drei verschiedenen Anzeigemodi wechseln.


In der ersten Ansicht wird der ausgewählte Messwert in großer Schrift angezeigt.

In der zweiten Ansicht werden der ausgewählte Messwert und eine entsprechende Bargraph-Darstellung angezeigt.

In der dritten Ansicht werden der ausgewählte Messwert sowie ein zweiter auswählbarer Wert, z. B. der Temperaturwert, angezeigt.

Mit der Taste "*OK*" wechseln Sie bei der ersten Inbetriebnahme des Gerätes in das Auswahlmenü "*Sprache*".

Auswahl Sprache

Dieser Menüpunkt dient zur Auswahl der Landessprache für die weitere Parametrierung.

Mit der Taste Taste "[->]" wählen Sie die gewünschte Sprache aus, "OK" bestätigen Sie die Auswahl und wechseln ins Hauptmenü.

Eine spätere Änderung der getroffenen Auswahl ist über den Menüpunkt "Inbetriebnahme - Display, Sprache des Menüs" jederzeit möglich.

6.4 Parametrierung - Schnellinbetriebnahme

Um den Sensor schnell und vereinfacht an die Messaufgabe anzupassen, wählen Sie im Startbild des Anzeige- und Bedienmoduls den Menüpunkt "Schnellinbetriebnahme".

Wählen Sie die einzelnen Schritte mit der [->]-Taste an.

Nach Abschluss des letzten Schrittes wird kurzzeitig "Schnellinbetriebnahme erfolgreich abgeschlossen" angezeigt.

Der Rücksprung in die Messwertanzeige erfolgt über die [->]- oder [ESC]-Tasten oder automatisch nach 3 s

Hinweis:

Eine Beschreibung der einzelnen Schritte finden Sie in der Kurz-Betriebsanleitung zum Sensor.

Die "Erweiterte Bedienung" finden Sie im nächsten Unterkapitel.

6.5 Parametrierung - Erweiterte Bedienung

Bei anwendungstechnisch anspruchsvollen Messstellen können Sie in der "*Erweiterten Bedienung*" weitergehende Einstellungen vornehmen.

Hauptmenü

Das Hauptmenü ist in fünf Bereiche mit folgender Funktionalität aufgeteilt:

Inbetriebnahme: Einstellungen z. B. zu Messstellenname, Anwendung, Einheiten, Lagekorrektur, Abgleich, Signalausgang, Bedienung sperren/freigeben

Display: Einstellungen z. B. zur Sprache, Messwertanzeige, Beleuchtung

Diagnose: Informationen z. B. zu Gerätestatus, Schleppzeiger, Simulation

Weitere Einstellungen: Datum/Uhrzeit, Reset, Kopierfunktion

Info: Gerätename, Hard- und Softwareversion, Werkskalibrierdatum, Sensormerkmale

Hinweis:

Zur optimalen Einstellung der Messung sollten die einzelnen Untermenüpunkte im Hauptmenüpunkt "Inbetriebnahme" nacheinander

ausgewählt und mit den richtigen Parametern versehen werden. Halten Sie die Reihenfolge möglichst ein.

Die Untermenüpunkte sind nachfolgend beschrieben.

6.5.1 Inbetriebnahme

Messstellenname

Im Menüpunkt "Sensor-TAG" editieren Sie ein zwölfstelliges Messstellenkennzeichen.

Dem Sensor kann damit eine eindeutige Bezeichnung gegeben werden, beispielsweise der Messstellenname oder die Tank- bzw. Produktbezeichnung. In digitalen Systemen und der Dokumentation von größeren Anlagen muss zur genaueren Identifizierung der einzelnen Messstellen eine einmalige Bezeichnung eingegeben werden.

Der Zeichenvorrat umfasst:

- Buchstaben von A ... 7
- Zahlen von 0 ... 9
- Sonderzeichen +, -, /, -

Anwendung

In diesem Menüpunkt aktivieren/deaktivieren Sie das Secondary Device für elektronischen Differenzdruck und wählen die Anwendung aus.

Der VEGABAR 86 ist zur Prozessdruck- und Füllstandmessung einsetzbar. Die Einstellung im Auslieferungszustand ist Prozessdruckmessung. Die Umschaltung erfolgt in diesem Bedienmenü.

Wenn Sie **kein** Secondary Device angeschlossen haben, bestätigen Sie dies durch "*Deaktivieren*".

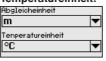
Je nach Ihrer gewählten Anwendung sind deshalb in den folgenden Bedienschritten unterschiedliche Unterkapitel von Bedeutung. Dort finden Sie die einzelnen Bedienschritte.

Geben Sie die gewünschten Parameter über die entsprechenden Tasten ein, speichern Ihre Eingaben mit [OK] und gehen Sie mit [ESC] und [->] zum nächsten Menüpunkt.

Einheiten

In diesem Menüpunkt werden die Abgleicheinheiten des Gerätes festgelegt. Die getroffene Auswahl bestimmt die angezeigte Einheit in den Menüpunkten "Min.-Abgleich (Zero)" und "Max.-Abgleich (Span)".

Abgleicheinheit:



Soll der Füllstand in einer Höheneinheit abgeglichen werden, so ist später beim Abgleich zusätzlich die Eingabe der Dichte des Mediums erforderlich.

Zusätzlich wird die Temperatureinheit des Gerätes festgelegt. Die getroffene Auswahl bestimmt die angezeigte Einheit in den Menüpunkten "Schleppzeiger Temperatur" und "in den Variablen des digitalen Ausgangssignals".

Temperatureinheit:

Geben Sie die gewünschten Parameter über die entsprechenden Tasten ein, speichern Ihre Eingaben mit [OK] und gehen Sie mit [ESC] und [->] zum nächsten Menüpunkt.

Lagekorrektur

Die Einbaulage des Gerätes kann besonders bei Druckmittlersystemen den Messwert verschieben (Offset). Die Lagekorrektur kompensiert diesen Offset. Dabei wird der aktuelle Messwert automatisch übernommen. Bei Relativdruckmesszellen kann zusätzlich ein manueller Offset durchgeführt werden.

Hinweis:

Bei automatischer Übernahme des aktuellen Messwertes darf dieser nicht durch Füllgutbedeckung oder einen statischen Druck verfälscht sein.

Bei der manuellen Lagekorrektur kann der Offsetwert durch den Anwender festgelegt werden. Wählen Sie hierzu die Funktion "Editieren" und geben Sie den gewünschten Wert ein.

Speichern Sie Ihre Eingaben mit [OK] und gehen Sie mit [ESC] und [->] zum nächsten Menüpunkt.

Nach durchgeführter Lagekorrektur ist der aktuelle Messwert zu 0 korrigiert. Der Korrekturwert steht mit umgekehrten Vorzeichen als Offsetwert im Display.

Die Lagekorrektur lässt sich beliebig oft wiederholen. Überschreitet jedoch die Summe der Korrekturwerte 20 % des Nennmessbereichs, so ist keine Lagekorrektur mehr möglich.

Parametrierbeispiel

Der VEGABAR 86 misst unabhängig von der im Menüpunkt "Anwendung" gewählten Prozessgröße immer einen Druck. Um die gewählte

Prozessgröße richtig ausgeben zu können, muss eine Zuweisung zu 0 % und 100 % des Ausgangssignals erfolgen (Abgleich).

Zum Abgleich wird der Druck, z. B. für den Füllstand bei vollem und leerem Behälter eingegeben, siehe folgendes Beispiel:

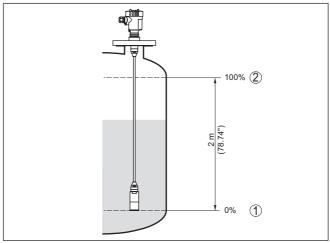


Abb. 33: Parametrierbeispiel Min.-/Max.-Abgleich Füllstandmessung

- 1 Min. Füllstand = 0 % entspricht 0,0 mbar
- 2 Max. Füllstand = 100 % entspricht 196,2 mbar

Sind diese Werte nicht bekannt, kann auch mit Füllständen von beispielsweise 10 % und 90 % abgeglichen werden. Anhand dieser Eingaben wird dann die eigentliche Füllhöhe errechnet.

Der aktuelle Füllstand spielt beim Abgleich keine Rolle, der Min.-/ Max.-Abgleich wird immer ohne Veränderung des Mediums durchgeführt. Somit können diese Einstellungen bereits im Vorfeld durchgeführt werden, ohne dass das Gerät eingebaut sein muss.

■ H

Werden die Einstellbereiche überschritten, so wird der eingegebene Wert nicht übernommen. Das Editieren kann mit [ESC] abgebrochen oder auf einen Wert innerhalb der Einstellbereiche korrigiert werden.


Min.-Abgleich - Füllstand

Gehen Sie wie folgt vor:

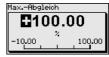
Den Menüpunkt "Inbetriebnahme" mit [->] auswählen und mit [OK] bestätigen. Nun mit [->] den Menüpunkt "Abgleich", dann "Min.-Abgleich" auswählen und mit [OK] bestätigen.

Mit [OK] den Prozentwert editieren und den Cursor mit [->] auf die gewünschte Stelle setzen.

- Den gewünschten Prozentwert mit [+] einstellen (z. B. 10 %) und mit [OK] speichern. Der Cursor springt nun auf den Druckwert.
- Den zugehörigen Druckwert für den Min.-Füllstand eingeben (z. B. 0 mbar).
- Einstellungen mit [OK] speichern und mit [ESC] und [->] zum Max.-Abgleich wechseln.

Der Min.-Abgleich ist damit abgeschlossen.

Für einen Abgleich mit Befüllung geben Sie einfach den unten auf dem Display angezeigten aktuellen Messwert ein.


Max.-Abgleich - Füllstand

Gehen Sie wie folgt vor:

 Mit [->] den Menüpunkt Max.-Abgleich auswählen und mit [OK] bestätigen.

- Mit [OK] den Prozentwert editieren und den Cursor mit [->] auf die gewünschte Stelle setzen.
- Den gewünschten Prozentwert mit [+] einstellen (z. B. 90 %) und mit [OK] speichern. Der Cursor springt nun auf den Druckwert.
- Passend zum Prozentwert den Druckwert für den vollen Behälter eingeben (z. B. 900 mbar).
- 5. Einstellungen mit [OK] speichern

Der Max.-Abgleich ist damit abgeschlossen.

Für einen Abgleich mit Befüllung geben Sie einfach den unten auf dem Display angezeigten aktuellen Messwert ein.

Dämpfung

Zur Dämpfung von prozessbedingten Messwertschwankungen stellen Sie in diesem Menüpunkt eine Integrationszeit von 0 ... 999 s ein. Die Schrittweite beträgt 0,1 s.

Die eingestellte Integrationszeit ist für Füllstand- und Prozessdruckmessung sowie für alle Anwendungen der elektronischen Differenzdruckmessung wirksam.

Die Werkseinstellung ist eine Dämpfung von 0 s.

Linearisierung

Eine Linearisierung ist bei allen Behältern erforderlich, bei denen das Behältervolumen nicht linear mit der Füllstandhöhe ansteigt - z. B. bei einem liegenden Rundtank oder Kugeltank - und die Anzeige oder Ausgabe des Volumens gewünscht ist. Für diese Behälter sind entsprechende Linearisierungskurven hinterlegt. Sie geben das Verhältnis zwischen prozentualer Füllstandhöhe und dem Behältervolumen an. Die Linearisierung gilt für die Messwertanzeige und den Stromausgang.

Bei Durchflussmessung und Auswahl "*Linear*" sind Anzeige und Ausgang (Prozentwert/Strom) linear zum "**Differenzdruck**". Damit kann z. B. ein Durchflussrechner gespeist werden.

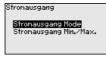
Bei Durchflussmessung und Auswahl "Radiziert" sind Anzeige und Ausgang (Prozentwert/Strom) linear zum "Durchfluss". 2)

Bei Durchfluss in zwei Richtungen (bidirektional) ist auch ein negativer Differenzdruck möglich. Dies ist bereits im Menüpunkt "*Min.-Abgleich Durchfluss*" zu berücksichtigen.

Vorsicht:

Beim Einsatz des jeweiligen Sensors als Teil einer Überfüllsicherung nach WHG ist folgendes zu beachten:

Wird eine Linearisierungskurve gewählt, so ist das Messsignal nicht mehr zwangsweise linear zur Füllhöhe. Dies ist vom Anwender insbesondere bei der Einstellung des Schaltpunktes am Grenzsignalgeber zu berücksichtigen.


Stromausgang

In den Menüpunkten "Stromausgang" legen Sie alle Eigenschaften des Stromausganges fest.

Bei Geräten mit integriertem zusätzlichen Stromausgang werden die Eigenschaften für jeden Stromausgang individuell eingestellt. Die folgenden Beschreibungen gelten für beide Stromausgänge.

Stromausgang (Mode)

Im Menüpunkt "Stromausgang Mode" legen Sie die Ausgangskennlinie und das Verhalten des Stromausganges bei Störungen fest.

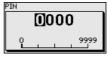
Die Werkseinstellung ist Ausgangskennlinie 4 ... 20 mA, der Störmode < 3.6 mA.

Stromausgang (Min./ Max.)

Im Menüpunkt "Stromausgang Min./Max." legen Sie das Verhalten des Stromausganges im Betrieb fest.

Die Werkseinstellung ist Min.-Strom 3,8 mA und Max.-Strom 20,5 mA.

Bedienung sperren/freigeben


Im Menüpunkt "Bedienung sperren/freigeben" schützen Sie die Sensorparameter vor unerwünschten oder unbeabsichtigten Änderungen.

Das Gerät geht von annähernd konstanter Temperatur und statischem Druck aus und rechnet den Differenzdruck über die radizierte Kennlinie in den Durchfluss um.

Dies erfolgt durch Eingabe einer vierstelligen PIN.

Bei aktiver PIN sind nur noch folgende Bedienfunktionen ohne PIN-Eingabe möglich:

- Menüpunkte anwählen und Daten anzeigen
- Daten aus dem Sensor in das Anzeige- und Bedienmodul einlesen

Die Freigabe der Sensorbedienung ist zusätzlich in jedem beliebigen Menüpunkt durch Eingabe der PIN möglich.

Vorsicht:

Bei aktiver PIN ist die Bedienung über PACTware/DTM und andere Systeme ebenfalls gesperrt.

6.5.2 Display

Sprache

Dieser Menüpunkt ermöglicht Ihnen die Einstellung der gewünschten Landessprache.

Folgende Sprachen sind verfügbar:

- Deutsch
- Englisch
- Französisch
- Spanisch
- Russisch
- ItalienischNiederländisch
- Portugiesisch
- Japanisch
- Chinesisch
- Polnisch
- Tschechisch
- Türkisch

Der VEGABAR 86 ist im Auslieferungszustand auf Englisch eingestellt

Anzeigewert 1 und 2

In diesem Menüpunkt definieren Sie, welcher Messwert auf dem Display angezeigt wird.

Die Einstellung im Auslieferungszustand für den Anzeigewert ist "Lin. Prozent".

Anzeigeformat 1 und 2

In diesem Menüpunkt definieren Sie, mit wievielen Nachkommastellen der Messwert auf dem Display anzeigt wird.

Die Einstellung im Auslieferungszustand für das Anzeigeformat ist "Automatisch".

Beleuchtung

Das Anzeige- und Bedienmodul verfügt über eine Hintergrundbeleuchtung für das Display. In diesem Menüpunkt schalten Sie die Beleuchtung ein. Die erforderliche Höhe der Betriebsspannung finden Sie in Kapitel "*Technische Daten*".

Im Auslieferungszustand ist die Beleuchtung eingeschaltet.

6.5.3 Diagnose

Gerätestatus

In diesem Menüpunkt wird der Gerätestatus angezeigt.

Im Fehlerfall wird der Fehlercode, z. B. F017, die Fehlerbeschreibung, z. B. "Abgleichspanne zu klein" und ein vierstellige Zahl für Servicezwecke angezeigt. Die Fehlercodes mit Beschreibung, Ursache sowie Beseitigung finden Sie in Kapitel "Asset Management".

Schleppzeiger Druck

Im Sensor werden der jeweils minimale und maximale Messwert gespeichert. Im Menüpunkt "Schleppzeiger Druck" werden die beiden Werte angezeigt.

In einem weiteren Fenster können Sie für die Schleppzeigerwerte separat ein Reset durchführen.

Schleppzeiger Temperatur

Im Sensor werden der jeweils minimale und maximale Messwert der Messzellen- und Elektroniktemperatur gespeichert. Im Menüpunkt "Schleppzeiger Temperatur" werden die beiden Werte angezeigt.

In einem weiteren Fenster können Sie für beide Schleppzeigerwerte separat ein Reset durchführen.

Messzellentenp. Min. 20.26 ℃ Ma×. 26.59 ℃ Elektroniktemperatur Min. – 32.80 ℃ Ma×. 38.02 ℃

Simulation

In diesem Menüpunkt simulieren Sie Messwerte. Damit lässt sich der Signalweg, z. B. über nachgeschaltete Anzeigegeräte oder die Eingangskarte des Leitsystems testen.

Wählen Sie die gewünschte Simulationsgröße aus und stellen Sie den gewünschten Zahlenwert ein.

Um die Simulation zu deaktivieren, drücken Sie die [ESC]-Taste und bestätigen Sie die Meldung "Simulation deaktivieren" mit der [OK]-Taste.

Vorsicht:

Bei laufender Simulation wird der simulierte Wert als 4 ... 20 mA-Stromwert und bei Geräten 4 ... 20 mA/HART zusätzlich als digitales HART-Signal ausgegeben. Im Rahmen der Asset-Management-Funktion erfolgt die Statusmeldung "Maintenance".

Hinweis:

Der Sensor beendet die Simulation ohne manuelle Deaktivierung automatisch nach 60 Minuten.

6.5.4 Weitere Einstellungen

In diesem Menüpunkt wird die interne Uhr des Sensors eingestellt. Es erfolgt keine Umstellung auf Sommer-/Winterzeit.

Reset

Datum/Uhrzeit

Bei einem Reset werden bestimmte vom Anwender durchgeführte Parametereinstellungen zurückgesetzt.

Folgende Resetfunktionen stehen zur Verfügung:

Auslieferungszustand: Wiederherstellen der Parametereinstellungen zum Zeitpunkt der Auslieferung werkseitig inkl. der auftragsspezifischen Einstellungen. Eine frei programmierte Linearisierungskurve sowie der Messwertspeicher werden gelöscht.

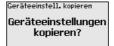
Basiseinstellungen: Zurücksetzen der Parametereinstellungen inkl. Spezialparameter auf die Defaultwerte des jeweiligen Gerätes. Eine

programmierte Linearisierungskurve sowie der Messwertspeicher werden gelöscht.

Hinweis:

Sie finden die Defaultwerte des Gerätes im Kapitel "Menüübersicht".

Geräteeinstellungen kopieren


Mit dieser Funktion werden Geräteeinstellungen kopiert. Folgende Funktionen stehen zur Verfügung:

- Aus Sensor lesen: Daten aus dem Sensor auslesen und in das Anzeige- und Bedienmodul speichern
- In Sensor schreiben: Daten aus dem Anzeige- und Bedienmodul zurück in den Sensor speichern

Folgende Daten bzw. Einstellungen der Bedienung des Anzeige- und Bedienmoduls werden hierbei gespeichert:

- Alle Daten der Menüs "Inbetriebnahme" und "Display"
- Im Menü "Weitere Einstellungen" die Punkte "Reset, Datum/Uhrzeit"
- Die frei programmierte Linearisierungskurve

Die kopierten Daten werden in einem EEPROM-Speicher im Anzeigeund Bedienmodul dauerhaft gespeichert und bleiben auch bei Spannungsausfall erhalten. Sie können von dort aus in einen oder mehrere Sensoren geschrieben oder zur Datensicherung für einen eventuellen Elektroniktausch aufbewahrt werden.

•

Hinweis:

Vor dem Speichern der Daten in den Sensor wird zur Sicherheit geprüft, ob die Daten zum Sensor passen. Dabei werden der Sensortyp der Quelldaten sowie der Zielsensor angezeigt. Falls die Daten nicht passen, so erfolgt eine Fehlermeldung bzw. wird die Funktion blockiert. Das Speichern erfolgt erst nach Freigabe.

Spezialparameter

In diesem Menüpunkt gelangen Sie in einen geschützten Bereich, um Spezialparameter einzugeben. In seltenen Fällen können einzelne Parameter verändert werden, um den Sensor an besondere Anforderungen anzupassen.

Ändern Sie die Einstellungen der Spezialparameter nur nach Rücksprache mit unseren Servicemitarbeitern.

Skalierung (1)

Im Menüpunkt "Skalierung (1)" definieren Sie die Skalierungsgröße und die Skalierungseinheit für den Füllstandwert auf dem Display, z. B. Volumen in I.

Weitere Einstellungen Reset Geräteeinstell. kopieren Skelierung Stronausgang HART-Betriebsart

Skalierung (2)

Im Menüpunkt "Skalierung (2)" definieren Sie das Skalierungsformat auf dem Display und die Skalierung des Füllstand-Messwertes für 0 % und 100 %.

Skalierung			
100 x =	100		
0 κ =	0		

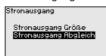
Stromausgang

In den Menüpunkten "Stromausgang" legen Sie alle Eigenschaften des Stromausganges fest.

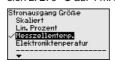
Bei Geräten mit integriertem zusätzlichen Stromausgang werden die Eigenschaften für jeden Stromausgang individuell eingestellt. Die folgenden Beschreibungen gelten für beide Stromausgänge.

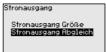
Stromausgang (Größe)

Im Menüpunkt "Stromausgang Größe" legen Sie fest, welche Messgröße über den Stromausgang ausgegeben wird.



Stromausgang (Abgleich)


Abhängig von der gewählten Messgröße ordnen Sie im Menüpunkt "Stromausgang Abgleich" zu, auf welche Messwerte sich 4 mA (0 %) und 20 mA (100 %) des Stromausganges beziehen.



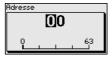
Wird als Messgröße die Messzellentemperatur gewählt, so beziehen sich z. B. 0 °C auf 4 mA und 100 °C auf 20 mA.

Stromausgang Abgleich			
100 x = 100.00			
		°C	
0	% =	0.00	
		°C	

HART-Mode

Der Sensor bietet die HART-Betriebsarten "Analoger Stromausgang" und "Fixer Strom (4 mA)". In diesem Menüpunkt legen Sie die HART-Betriebsart fest und geben die Adresse bei Multidrop-Betrieb an.

In der Betriebsart "Fixer Stromausgang" können bis zu 63 Sensoren an einer Zweidrahtleitung betrieben werden (Multidrop-Betrieb). Jedem Sensor muss eine Adresse zwischen 0 und 63 zugeordnet werden.



Wenn Sie die Funktion "Analoger Stromausgang" auswählen und gleichzeitig eine Adressnummer eingeben, können Sie auch im Multidrop-Betrieb ein 4 ... 20 mA-Signal ausgeben.

Bei der Betriebsart "Fixer Strom (4 mA)" wird unabhängig vom aktuellen Füllstand ein festes 4 mA-Signal ausgegeben.

Die Einstellung im Auslieferungszustand ist "Analoger Stromausgang" und die Adresse 00.

6.5.5 Info

Gerätename

In diesem Menüpunkt lesen Sie den Gerätenamen und die Geräteseriennummer aus:

Geräteausführung

In diesem Menüpunkt wird die Hard- und Softwareversion des Sensors angezeigt.

Werkskalibrierdatum

In diesem Menüpunkt wird das Datum der werkseitigen Kalibrierung des Sensors sowie das Datum der letzten Änderung von Sensorparametern über das Anzeige- und Bedienmodul bzw. über den PC angezeigt.

Sensormerkmale

In diesem Menüpunkt werden Merkmale des Sensors wie Zulassung, Prozessanschluss, Dichtung, Messbereich, Elektronik, Gehäuse und weitere angezeigt.

6.6 Menüübersicht

Die folgenden Tabellen zeigen das Bedienmenü des Gerätes. Je nach Geräteausführung oder Anwendung sind nicht alle Menüpunkte verfügbar bzw. unterschiedlich belegt.

Inbetriebnahme

Menüpunkt	Parameter	Defaultwert
Messstellenname	19 alphanumerische Zeichen/Sonder- zeichen	Sensor
Anwendung	Füllstand, Prozessdruck	Füllstand
	Secondary Device für elektronischen Differenzdruck ³⁾	Deaktiviert
Einheiten	Abgleicheinheit (m, bar, Pa, psi benutzerdefiniert)	mbar (bei Nennmessbereichen ≤ 400 mbar)
		bar (bei Nennmessbereichen ≥ 1 bar)
	Temperatureinheit (°C, °F)	°C
Lagekorrektur	Offset	0,00 bar
Abgleich	Zero-/MinAbgleich	0,00 bar
		0,00 %
	Span-/MaxAbgleich	Nennmessbereich in bar
		100,00 %
Dämpfung	Integrationszeit	1 s
Linearisierung	Linear, Liegender Rundtank, benut- zerdefiniert	Linear
Stromausgang	Stromausgang - Mode	
	Ausgangskennlinie: 4 20 mA, 20 4 mA	4 20 mA
	Störmode: ≤ 3,6 mA, ≥ 20 mA, letzter Messwert	≤ 3,6 mA
	Stromausgang - Min./Max.	
	Min. Strom: 3,8 mA, 4 mA	3,8 mA
	Max. Strom: 20 mA, 20,5 mA	20,5 mA
Bedienung sperren	Gesperrt, Freigegeben	Freigegeben

Display

Menüpunkt	Defaultwert	
Sprache des Menüs	Ausgewählte Sprache	
Anzeigewert 1	Druck	
Anzeigewert 2	Keramische Messzelle: Messzellentemperatur in °C	
	Metallische Messzelle: Elektroniktemperatur in °C	
Anzeigeformat	Anzahl Nachkommastellen automatisch	
Beleuchtung	Eingeschaltet	

Diagnose

Menüpunkt	Parameter	Defaultwert
Gerätestatus		-
Schleppzeiger	Druck	Aktueller Druckmesswert
Schleppzeiger Temp.	Temperatur	Aktuelle Messzellen- und Elektroniktem- peratur
Simulation	Druck, Prozent, Stromausgang, Linea- risierte Prozent, Messzellentemperatur, Elektroniktemperatur	Prozessdruck

Weitere Einstellungen

Menüpunkt	Parameter	Defaultwert
Datum/Uhrzeit		Aktuelles Datum/Aktuelle Uhrzeit
Reset	Auslieferungszustand, Basiseinstellungen	
Geräteeinstellungen kopieren	Aus Sensor lesen, in Sensor schreiben	
Skalierung	Skalierungsgröße	Volumen in I
	Skalierungsformat	0 % entspricht 0 I
		100 % entspricht 0 I
Stromausgang	Stromausgang - Größe	LinProzent - Füllstand
	Stromausgang - Abgleich	0 100 % entspricht 4 20 mA
Stromausgang 2	Stromausgang - Größe	Messzellentemperatur (keramische Messzelle)
	Stromausgang - Abgleich	0 100 °C entspricht 4 20 mA
HART-Betriebsart	HART-Adresse, Stromausgang	Adresse 00, analoger Stromausgang
Spezialparameter	Service-Login	Kein Reset

Info

Menüpunkt	Parameter
Gerätename	VEGABAR 86
Geräteausführung	Hard- und Softwareversion
Werkskalibrierdatum	Datum
Sensormerkmale	Auftragsspezifische Merkmale

6.7 Parametrierdaten sichern

Auf Papier

Es wird empfohlen, die eingestellten Daten zu notieren, z. B. in dieser Betriebsanleitung und anschließend zu archivieren. Sie stehen damit für mehrfache Nutzung bzw. für Servicezwecke zur Verfügung.

Im Anzeige- und Bedienmodul

Ist das Gerät mit einem Anzeige- und Bedienmodul ausgestattet, so können die Parametrierdaten darin gespeichert werden. Die

Vorgehensweise wird im Menüpunkt "Geräteeinstellungen kopieren" beschrieben.

7 In Betrieb nehmen mit PACTware

7.1 Den PC anschließen

Über Schnittstellenadapter direkt am Sensor

Abb. 34: Anschluss des PCs via Schnittstellenadapter direkt am Sensor

- 1 USB-Kabel zum PC
- 2 Schnittstellenadapter VEGACONNECT
- 3 Sensor

Über Schnittstellenadapter und HART

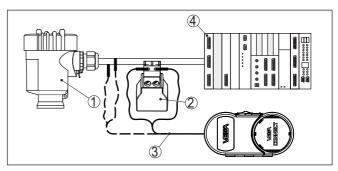


Abb. 35: Anschluss des PCs via HART an die Signalleitung

- 1 Sensor
- 2 HART-Widerstand 250 Ω (optional je nach Auswertung)
- 3 Anschlusskabel mit 2 mm-Steckerstiften und Klemmen
- 4 Auswertsystem/SPS/Spannungsversorgung
- 5 Schnittstellenadapter, z. B. VEGACONNECT 4

•

Hinweis:

Bei Speisegeräten mit integriertem HART-Widerstand (Innenwiderstand ca. $250~\Omega$) ist kein zusätzlicher externer Widerstand erforderlich. Dies gilt z. B. für die VEGA-Geräte VEGATRENN 149A, VEGAMET 381 und VEGAMET 391. Auch marktübliche Ex-Speisetrenner sind meist mit einem hinreichend großen Strombegrenzungswiderstand ausgestattet. In diesen Fällen kann der Schnittstellenadapter parallel zur 4 ... 20 mA-Leitung angeschlossen werden (in der vorherigen Abbildung gestrichelt dargestellt).

Voraussetzungen

7.2 Parametrieren

Zur Parametrierung des Gerätes über einen Windows-PC ist die Konfigurationssoftware PACTware und ein passender Gerätetreiber (DTM) nach dem FDT-Standard erforderlich. Die jeweils aktuelle PACTware-Version sowie alle verfügbaren DTMs sind in einer DTM Collection zusammengefasst. Weiterhin können die DTMs in andere Rahmenapplikationen nach FDT-Standard eingebunden werden.

•

Hinweis:

Um die Unterstützung aller Gerätefunktionen sicherzustellen, sollten Sie stets die neueste DTM Collection verwenden. Weiterhin sind nicht alle beschriebenen Funktionen in älteren Firmwareversionen enthalten. Die neueste Gerätesoftware können Sie von unserer Homepage herunterladen. Eine Beschreibung des Updateablaufs ist ebenfalls im Internet verfügbar.

Die weitere Inbetriebnahme wird in der Betriebsanleitung "DTM Collection/PACTware" beschrieben, die jeder DTM Collection beiliegt und über das Internet heruntergeladen werden kann. Weiterführende Beschreibungen sind in der Online-Hilfe von PACTware und den DTMs enthalten.

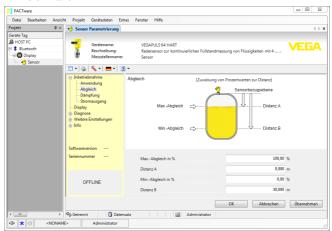


Abb. 36: Beispiel einer DTM-Ansicht

Standard-/Vollversion

Alle Geräte-DTMs gibt es als kostenfreie Standardversion und als kostenpflichtige Vollversion. In der Standardversion sind alle Funktionen für eine komplette Inbetriebnahme bereits enthalten. Ein Assistent zum einfachen Projektaufbau vereinfacht die Bedienung erheblich. Auch das Speichern/Drucken des Projektes sowie eine Import-/Exportfunktion sind Bestandteil der Standardversion.

In der Vollversion ist zusätzlich eine erweiterte Druckfunktion zur vollständigen Projektdokumentation sowie die Speichermöglichkeit von Messwert- und Echokurven enthalten. Weiterhin ist hier ein Tankkalkulationsprogramm sowie ein Multiviewer zur Anzeige und Analyse der gespeicherten Messwert- und Echokurven verfügbar.

Die Standardversion kann auf <u>www.vega.com/downloads</u> und "*Software*" heruntergeladen werden. Die Vollversion erhalten Sie auf einer CD über Ihre zuständige Vertretung.

7.3 Parametrierdaten sichern

Es wird empfohlen, die Parametrierdaten über PACTware zu dokumentieren bzw. zu speichern. Sie stehen damit für mehrfache Nutzung bzw. für Servicezwecke zur Verfügung.

8 In Betrieb nehmen mit anderen Systemen

8.1 DD-Bedienprogramme

Für das Gerät stehen Gerätebeschreibungen als Enhanced Device Description (EDD) für DD-Bedienprogramme wie z.B. AMS™ und PDM zur Verfügung.

Die Dateien können auf <u>www.vega.com/downloads</u> und "*Software*" heruntergeladen werden.

8.2 Field Communicator 375, 475

Für das Gerät stehen Gerätebeschreibungen als EDD zur Parametrierung mit dem Field Communicator 375 bzw. 475 zur Verfügung.

Für die Integration der EDD in den Field Communicator 375 bzw. 475 ist die vom Hersteller erhältliche Software "Easy Upgrade Utility" erforderlich. Diese Software wird über das Internet aktualisiert und neue EDDs werden nach Freigabe durch den Hersteller automatisch in den Gerätekatalog dieser Software übernommen. Sie können dann auf einen Field Communicator übertragen werden.

In der HART-Kommunikation werden die Universal Commands und ein Teil der Common Practice Commands unterstützt.

9 Diagnose, Asset Management und Service

9.1 Instandhalten

Wartung

Bei bestimmungsgemäßer Verwendung ist im Normalbetrieb keine besondere Wartung erforderlich.

Vorkehrungen gegen Anhaftungen

Bei manchen Anwendungen können Füllgutanhaftungen an der Membran das Messergebnis beeinflussen. Treffen Sie deshalb je nach Sensor und Anwendung Vorkehrungen, um starke Anhaftungen und insbesondere Aushärtungen zu vermeiden.

Reinigung

Die Reinigung trägt dazu bei, dass Typschild und Markierungen auf dem Gerät sichtbar sind.

Beachten Sie hierzu folgendes:

- Nur Reinigungsmittel verwenden, die Gehäuse, Typschild und Dichtungen nicht angreifen
- Nur Reinigungsmethoden einsetzen, die der Geräteschutzart entsprechen

9.2 Diagnosespeicher

Das Gerät verfügt über mehrere Speicher, die zu Diagnosezwecken zur Verfügung stehen. Die Daten bleiben auch bei Spannungsunterbrechung erhalten.

Messwertspeicher

Bis zu 100.000 Messwerte können im Sensor in einem Ringspeicher gespeichert werden. Jeder Eintrag enthält Datum/Uhrzeit sowie den jeweiligen Messwert.

Speicherbare Werte sind je nach Geräteausführung z. B.:

- Füllstand
- Prozessdruck
- Differenzdruck
- Statischer Druck
- Prozentwert
- Skalierte Werte
- Stromausgang
- Lin.-Prozent
- Messzellentemperatur
- Elektroniktemperatur

Der Messwertspeicher ist im Auslieferungszustand aktiv und speichert alle 10 s den Druckwert und die Messzellentemperatur, bei elektronischem Differenzdruck auch den statischen Druck.

Die gewünschten Werte und Aufzeichnungsbedingungen werden über einen PC mit PACTware/DTM bzw. das Leitsystem mit EDD festgelegt. Auf diesem Wege werden die Daten ausgelesen bzw. auch zurückgesetzt.

Ereignisspeicher

Bis zu 500 Ereignisse werden mit Zeitstempel automatisch im Sensor nicht löschbar gespeichert. Jeder Eintrag enthält Datum/Uhrzeit, Ereignistyp, Ereignisbeschreibung und Wert.

Ereignistypen sind z. B.:

- Änderung eines Parameters
- Ein- und Ausschaltzeitpunkte
- Statusmeldungen (nach NE 107)
- Fehlermeldungen (nach NE 107)

Über einen PC mit PACTware/DTM bzw. das Leitsystem mit EDD werden die Daten ausgelesen.

9.3 Asset-Management-Funktion

Das Gerät verfügt über eine Selbstüberwachung und Diagnose nach NE 107 und VDI/VDE 2650. Zu den in den folgenden Tabellen angegebenen Statusmeldungen sind detailliertere Fehlermeldungen unter dem Menüpunkt "Diagnose" über das jeweilige Bedientool ersichtlich.

Statusmeldungen

Die Statusmeldungen sind in folgende Kategorien unterteilt:

- Ausfall
- Funktionskontrolle
- Außerhalb der Spezifikation
- Wartungsbedarf

und durch Piktogramme verdeutlicht:

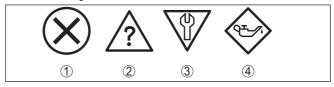


Abb. 37: Piktogramme der Statusmeldungen

- 1 Ausfall (Failure) rot
- 2 Außerhalb der Spezifikation (Out of specification) gelb
- 3 Funktionskontrolle (Function check) orange
- 4 Wartungsbedarf (Maintenance) blau

Ausfall (Failure):

Aufgrund einer erkannten Funktionsstörung im Gerät gibt das Gerät ein Ausfallsignal aus.

Diese Statusmeldung ist immer aktiv. Eine Deaktivierung durch den Anwender ist nicht möglich.

Funktionskontrolle (Function check):

Am Gerät wird gearbeitet, der Messwert ist vorübergehend ungültig (z. B. während der Simulation).

Diese Statusmeldung ist per Default inaktiv.

Außerhalb der Spezifikation (Out of specification):

Der Messwert ist unsicher, da die Gerätespezifikation überschritten ist (z. B. Elektroniktemperatur).

Diese Statusmeldung ist per Default inaktiv.

Wartungsbedarf (Maintenance):

Durch externe Einflüsse ist die Gerätefunktion eingeschränkt. Die Messung wird beeinflusst, der Messwert ist noch gültig. Gerät zur Wartung einplanen, da Ausfall in absehbarer Zeit zu erwarten ist (z. B. durch Anhaftungen).

Diese Statusmeldung ist per Default inaktiv.

Failure

Code	Ursache	Beseitigung	DevSpec
Textmeldung			State in CMD 48
F013	Überdruck oder Unterdruck	Messzelle austauschen	Byte 5, Bit 0 von Byte 0 5
Kein gültiger Messwert vorhanden	Messzelle defekt	Gerät zur Reparatur einsenden	
F017	Abgleich nicht innerhalb der	Abgleich entsprechend den	Byte 5, Bit 1 von
Abgleichspanne zu klein	Spezifikation	Grenzwerten ändern	Byte 0 5
F025	Stützstellen sind nicht stetig	Linearisierungstabelle prüfen	Byte 5, Bit 2 von
Fehler in der Linearisie- rungstabelle	steigend, z. B. unlogische Wertepaare	Tabelle löschen/neu anlegen	Byte 0 5
F036	Fehlgeschlagenes oder abge-	Softwareupdate wiederholen	Byte 5, Bit 3 von
Keine lauffähige Sen- sorsoftware	brochenes Softwareupdate	Elektronikausführung prüfen	Byte 0 5
Sorsonware		Elektronik austauschen	
		Gerät zur Reparatur einsenden	
F040	Hardwaredefekt	Elektronik austauschen	Byte 5, Bit 4 von Byte 0 5
Fehler in der Elektronik		Gerät zur Reparatur einsenden	Dyte 0 5
F041	Keine Verbindung zur Sensor- elektronik	Verbindung zwischen Sensor- und Hauptelektronik überprüfen (bei separater Ausführung)	-
Kommunikationsfehler	CICKUOTIK		
F042	Keine Verbindung zum Secon-	Verbindung zwischen Prima-	-
Kommunikationsfehler Secondary-Sensor	dary-Sensor	ry- und Secondary-Sensor überprüfen	
F080	Allgemeiner Softwarefehler	Betriebsspannung kurzzeitig	Byte 5, Bit 5 von
Allgemeiner Soft- warefehler		trennen	Byte 0 5
F105	Gerät befindet sich noch in der	Ende der Einschaltphase ab-	Byte 5, Bit 6 von
Messwert wird ermittelt	Einschaltphase, der Messwert konnte noch nicht ermittelt wer- den	warten	Byte 0 5
F113	Fehler in der internen Geräte-	Betriebsspannung kurzzeitig	Byte 4, Bit 4 von
Kommunikationsfehler	kommunikation	trennen	Byte 0 5
		Gerät zur Reparatur einsenden	
F260	Fehler in der im Werk durchge- führten Kalibrierung	Elektronik austauschen	Byte 4, Bit 0 von Byte 0 5
Fehler in der Kalibrie- rung	Fehler im EEPROM	Gerät zur Reparatur einsenden	Dyte 0 5
F261	Fehler bei der Inbetriebnahme	Inbetriebnahme wiederholen	Byte 4, Bit 1 von
Fehler in der Geräteeinstellung	Fehler beim Ausführen eines Resets	Reset wiederholen	Byte 0 5

Code Textmeldung	Ursache	Beseitigung	DevSpec State in CMD 48
F264 Einbau-/Inbetriebnah- mefehler	Inkonsistente Einstellungen (z. B.: Distanz, Abgleicheinheiten bei An- wendung Prozessdruck) für ausgewählte Anwendung Ungültige Sensor-Konfigu- ration (z. B.: Anwendung elektronischer Differenzdruck mit angeschlossener Differenz- druckmesszelle)	Einstellungen ändern Angeschlossene Sensorkonfigu- ration oder Anwendung ändern	Byte 4, Bit 2 von Byte 0 5
F265 Messfunktion gestört	Sensor führt keine Messung mehr durch	Reset durchführen Betriebsspannung kurzzeitig trennen	Byte 4, Bit 3 von Byte 0 5

Function check

Code Textmeldung	Ursache	Beseitigung	DevSpec State in CMD 48
C700	Eine Simulation ist aktiv	Simulation beenden	"Simulation Active"
Simulation aktiv		Automatisches Ende nach 60 Minuten abwarten	in "Standardized Status 0"

Tab. 10: Fehlercodes und Textmeldungen, Hinweise zur Ursache und Beseitigung

Out of specification

Code Textmeldung	Ursache	Beseitigung	DevSpec State in CMD 48
S600 Unzulässige Elektronik- temperatur	Temperatur der Elektronik im nicht spezifizierten Bereich	Umgebungstemperatur prüfen Elektronik isolieren	Byte 23, Bit 0 von Byte 14 24
S603 Unzulässige Betriebs- spannung	Betriebsspannung unterhalb des spezifizierten Bereichs	Elektrischen Anschluss prüfen Ggf. Betriebsspannung erhöhen	-
S605 Unzulässiger Druckwert	Gemessener Prozessdruck unterhalb bzw. oberhalb des Einstellbereiches	Nennmessbereich des Gerä- tes prüfen Ggf. Gerät mit höherem Mess- bereich einsetzen	-

Maintenance

Code	Ursache	Beseitigung	DevSpec
Textmeldung			State in CMD 48
M500	Beim Reset auf Auslieferungs-	Reset wiederholen	Bit 0 von
Fehler im Ausliefe- rungszustand	zustand konnten die Daten nicht wiederhergestellt werden	XML-Datei mit Sensordaten in Sensor laden	Byte 14 24
M501	Stützstellen sind nicht stetig	Linearisierungstabelle prüfen	Bit 1 von
Fehler in der nicht aktiven Linearisierungs- tabelle	steigend, z. B. unlogische Wertepaare	Tabelle löschen/neu anlegen	Byte 14 24

Code Textmeldung	Ursache	Beseitigung	DevSpec State in CMD 48
M502 Fehler im Ereignisspeicher	Hardwarefehler EEPROM	Elektronik austauschen Gerät zur Reparatur einsenden	Bit 2 von Byte 14 24
M504 Fehler an einer Geräte- schnittstelle	Hardwaredefekt	Elektronik austauschen Gerät zur Reparatur einsenden	Bit 3 von Byte 14 24
M507 Fehler in der Geräteeinstellung	Fehler bei der Inbetriebnahme Fehler beim Ausführen eines Resets	Reset durchführen und Inbetriebnahme wiederholen	Bit 4 von Byte 14 24

9.4 Störungen beseitigen

Verhalten bei Störungen

Es liegt in der Verantwortung des Anlagenbetreibers, geeignete Maßnahmen zur Beseitigung aufgetretener Störungen zu ergreifen.

Störungsbeseitigung

Die ersten Maßnahmen sind:

- Auswertung von Fehlermeldungen
- Überprüfung des Ausgangssignals
- Behandlung von Messfehlern

Weitere umfassende Diagnosemöglichkeiten bieten Ihnen ein Smartphone/Tablet mit der Bedien-App bzw. ein PC/Notebook mit der Software PACTware und dem passenden DTM. In vielen Fällen lassen sich die Ursachen auf diesem Wege feststellen und die Störungen so beseitigen.

4 ... 20 mA-Signal

Schließen Sie gemäß Anschlussplan ein Multimeter im passenden Messbereich an. Die folgende Tabelle beschreibt mögliche Fehler im Stromsignal und hilft bei der Beseitigung:

Fehler	Ursache	Beseitigung
4 20 mA-Signal nicht stabil	Messgröße schwankt	Dämpfung einstellen
4 20 mA-Signal fehlt Elektrischer Anschluss fehlerhaft		Anschluss prüfen, ggf. korrigieren
	Spannungsversorgung fehlt	Leitungen auf Unterbrechung prüfen, ggf. reparieren
	Betriebsspannung zu niedrig, Bürdenwiderstand zu hoch	Prüfen, ggf. anpassen
Stromsignal größer 22 mA, kleiner 3,6 mA	Sensorelektronik defekt	Gerät austauschen bzw. je nach Geräteausführung zur Reparatur einsenden

Verhalten nach Störungsbeseitigung

Je nach Störungsursache und getroffenen Maßnahmen sind ggf. die in Kapitel "In Betrieb nehmen" beschriebenen Handlungsschritte erneut zu durchlaufen bzw. auf Plausibilität und Vollständigkeit zu überprüfen.

24 Stunden Service-Hotline

Sollten diese Maßnahmen dennoch zu keinem Ergebnis führen, rufen Sie in dringenden Fällen die VEGA Service-Hotline an unter Tel. +49 1805 858550.

Die Hotline steht Ihnen auch außerhalb der üblichen Geschäftszeiten an 7 Tagen in der Woche rund um die Uhr zur Verfügung.

Da wir diesen Service weltweit anbieten, erfolgt die Unterstützung in englischer Sprache. Der Service ist kostenfrei, es fallen lediglich die üblichen Telefongebühren an.

9.5 Prozessbaugruppe bei Ausführung IP68 (25 bar) tauschen

Bei der Ausführung IP68 (25 bar) kann der Anwender die Prozessbaugruppe vor Ort tauschen. Anschlusskabel und externes Gehäuse können beibehalten werden.

Erforderliches Werkzeug:

Innensechskantschlüssel, Größe 2

Vorsicht:

Der Austausch darf nur im spannungsfreien Zustand erfolgen.

Bei Ex-Anwendungen darf nur ein Austauschteil mit entsprechender Ex-Zulassung eingesetzt werden.

Vorsicht:

Beim Austausch die Innenseite der Teile vor Schmutz und Feuchtigkeit schützen.

Gehen Sie zum Tausch wie folgt vor:

- Fixierschraube mit Innensechskantschlüssel lösen.
- 2. Kabelbaugruppe vorsichtig von der Prozessbaugruppe abziehen

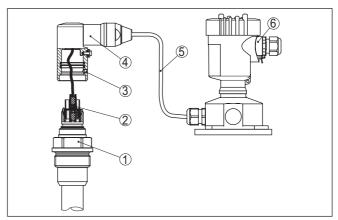


Abb. 38: VEGABAR 86 in IP68-Ausführung 25 bar und seitlichem Kabelabgang, externes Gehäuse

- 1 Prozessbaugruppe
- 2 Steckverbinder
- 3 Kabelbaugruppe
- 4 Anschlusskabel
- 5 Externes Gehäuse
- 3. Steckverbinder lösen
- 4. Neue Prozessbaugruppe an die Messstelle montieren
- 5. Steckverbinder wieder zusammenfügen
- Kabelbaugruppe auf Prozessbaugruppe stecken und in gewünschte Position drehen
- 7. Fixierschraube mit Innensechskantschlüssel festdrehen Der Austausch ist damit abgeschlossen.

9.6 Elektronikeinsatz tauschen

Der Elektronikeinsatz kann bei einem Defekt vom Anwender gegen einen identischen Typ getauscht werden.

Bei Ex-Anwendungen darf nur ein Gerät und ein Elektronikeinsatz mit entsprechender Ex-Zulassung eingesetzt werden.

Detaillierte Informationen zum Elektroniktausch finden Sie in der Betriebsanleitung zum Elektronikeinsatz.

9.7 Softwareupdate

Zum Update der Gerätesoftware sind folgende Komponenten erforderlich:

- Gerät
- Spannungsversorgung
- Schnittstellenadapter VEGACONNECT
- PC mit PACTware
- Aktuelle Gerätesoftware als Datei

Die aktuelle Gerätesoftware sowie detallierte Informationen zur Vorgehensweise finden Sie im Downloadbereich auf www.vega.com.

Die Informationen zur Installation sind in der Downloaddatei enthalten.

Vorsicht:

Geräte mit Zulassungen können an bestimmte Softwarestände gebunden sein. Stellen Sie deshalb sicher, dass bei einem Softwareupdate die Zulassung wirksam bleibt.

Detallierte Informationen finden Sie im Downloadbereich auf www.vega.com.

9.8 Vorgehen im Reparaturfall

Ein Geräterücksendeblatt sowie detallierte Informationen zur Vorgehensweise finden Sie im Downloadbereich auf unserer Homepage. Sie helfen uns damit, die Reparatur schnell und ohne Rückfragen durchzuführen.

Gehen Sie im Reparaturfall wie folgt vor:

- Für jedes Gerät ein Formular ausdrucken und ausfüllen
- Das Gerät reinigen und bruchsicher verpacken
- Das ausgefüllte Formular und eventuell ein Sicherheitsdatenblatt außen auf der Verpackung anbringen
- Adresse für Rücksendung bei der für Sie zuständigen Vertretung erfragen. Sie finden diese auf unserer Homepage.

10 Ausbauen

10.1 Ausbauschritte

Führen Sie zum Ausbau des Gerätes die Schritte der Kapitel "*Montieren*" und "*An die Spannungsversorgung anschließen*" sinngemäß umgekehrt durch.

Warnung:

Achten Sie beim Ausbau auf die Prozessbedingungen in Behältern oder Rohrleitungen. Es besteht Verletzungsgefahr z. B. durch hohe Drücke oder Temperaturen sowie aggressive oder toxische Medien. Vermeiden Sie dies durch entsprechende Schutzmaßnahmen.

10.2 Entsorgen

Führen Sie das Gerät einem spezialisierten Recyclingbetrieb zu und nutzen Sie dafür nicht die kommunalen Sammelstellen.

Entfernen Sie zuvor eventuell vorhandene Batterien, sofern sie aus dem Gerät entnommen werden können und führen Sie diese einer getrennten Erfassung zu.

Sollten personenbezogene Daten auf dem zu entsorgenden Altgerät gespeichert sein, löschen Sie diese vor der Entsorgung.

Sollten Sie keine Möglichkeit haben, das Altgerät fachgerecht zu entsorgen, so sprechen Sie mit uns über Rücknahme und Entsorgung.

11 Anhang

11.1 Technische Daten

Hinweis für zugelassene Geräte

Für zugelassene Geräte (z. B. mit Ex-Zulassung) gelten die technischen Daten in den entsprechenden Sicherheitshinweisen im Lieferumfang. Diese können, z. B. bei den Prozessbedingungen oder der Spannungsversorgung, von den hier aufgeführten Daten abweichen.

Alle Zulassungsdokumente können über unsere Homepage heruntergeladen werden.

Werkstoffe und Gewichte

Werkstoffe, medienberührt

Prozessanschluss 316L, PVDF, Duplex (1.4462), Titan

Messwertaufnehmer 316L, PVDF Kabelbaugruppe Duplex (1.4462)

Tragkabel PE (KTW-zugelassen), PUR, FEP

Dichtung Tragkabel FKM, FEP Verbindungsrohr 316L

Messzellendichtung FKM (VP2/A) - FDA- und KTW-zugelassen, FFKM (Kal-

rez 6375), EPDM (A+P 70.10-02)

 $\label{eq:membran} \mbox{Membran} \qquad \qquad \mbox{Saphir-Keramik}^{\mbox{\circ}} \ (>99,9 \ \% \mbox{ige Al}_2\mbox{O}_3\mbox{-Keramik})$ $\mbox{Messzellendichtung} \qquad \qquad \mbox{FKM (VP2/A) - FDA- und KTW-zugelassen, FFKM}$

(Kalrez 6375, Perlast G74S, Perlast G75B), EPDM

(A+P 70.10-02)

Dichtung für Prozessanschluss (im Lieferumfang)

- Gewinde G11/2 (DIN 3852-A), Tragka- Klingersil C-4400

belverschraubung G1½

Werkstoffe, nicht medienberührt

Fügewerkstoff Messzelle Glas
Abspannklemme 1.4301
Tragkabelverschraubung, Arretierver- 316L, PVDF

schraubung Sensorgehäuse

- Gehäuse Kunststoff PBT (Polyester), Aluminium AlSi10Mg (pul-

verbeschichtet, Basis: Polyester), 316L

Kabelverschraubung
 PA, Edelstahl, Messing

Kabelverschraubung: Dichtung,
 NBR, PA

Verschluss

Dichtung Gehäusedeckel
 Silikon SI 850 R, NBR silikonfrei

- Sichtfenster Gehäusedeckel Polycarbonat (UL746-C gelistet), Glas⁴⁾

Erdungsklemme 316L
 Externes Gehäuse - abweichende Werkstoffe

Gehäuse und Sockel Kunststoff PBT (Polvester), 316L

4) Glas bei Aluminium- und Edelstahl Feingussgehäuse

Sockeldichtung
 Dichtung unter Wandmontageplatte⁵⁾
 EPDM

Sichtfenster Gehäusedeckel
 Polycarbonat (UL746-C gelistet)

Erdungsklemme 316Ti/316L

Verbindungskabel bei IP68 (25 bar)-Ausführung⁶⁾

– Kabelmantel PE, PUR

– Typschildträger auf Kabel PE-hart

Werkstoffe Messwertaufnehmerschutz

Transportschutzkappe Messwertaufneh- PE

mer ø 22 mm

Transport- und Montageschutz Mess-

wertaufnehmer ø 32 mm

Transport- und Montageschutz Mess-

wertaufnehmer PVDF

Transportschutznetz

PF

PA

PF

Gewichte

 Grundgewicht
 0,7 kg (1.543 lbs)

 Tragkabel
 0,1 kg/m (0.07 lbs/ft)

 Verbindungsrohr
 1,5 kg/m (1 lbs/ft)

 Abspannklemme
 0,2 kg (0.441 lbs)

 Tragkabelverschraubung
 0,4 kg (0.882 lbs)

Anzugsmomente

Max. Anzugsmoment für Prozessanschluss

- G1½ 200 Nm (147.5 lbf ft)

Max. Anzugsmoment für NPT-Kabelverschraubungen und Conduit-Rohre

Kunststoffgehäuse
 Aluminium-/Edelstahlgehäuse
 Nm (7.376 lbf ft)
 50 Nm (36.88 lbf ft)

Eingangsgröße

Die Angaben dienen zur Übersicht und beziehen sich auf die Messzelle. Einschränkungen durch Werkstoff und Bauform des Prozessanschluss sowie die gewählte Druckart sind möglich. Es gelten jeweils die Angaben des Typschildes.⁷⁾

Nennmessbereiche und Überlastbarkeit in bar/kPa

Nennmessbereich	Überlastbarkeit	
	Maximaler Druck	Minimaler Druck
Überdruck		
0 +0,025 bar/0 +2,5 kPa	+5 bar/+500 kPa	-0,05 bar/-5 kPa

⁵⁾ Nur bei 316L mit 3A-Zulassung

⁶⁾ Zwischen Messwertaufnehmer und externem Elektronikgehäuse.

⁷⁾ Angaben zur Überlastbarkeit gelten bei Referenztemperatur.

Nennmessbereich	Übe	rlastbarkeit
	Maximaler Druck	Minimaler Druck
0 +0,1 bar/0 +10 kPa	+15 bar/+1500 kPa	-0,2 bar/-20 kPa
0 +0,4 bar/0 +40 kPa	+25 bar/+2500 kPa	-0,8 bar/-80 kPa
0 +1 bar/0 +100 kPa	+25 bar/+2500 kPa	-1 bar/-100 kPa
0 +2,5 bar/0 +250 kPa	+25 bar/+2500 kPa	-1 bar/-100 kPa
0 +5 bar/0 +500 kPa	+25 bar/+2500 kPa	-1 bar/-100 kPa
0 +10 bar/0 +1000 kPa	+25 bar/+2500 kPa	-1 bar/-100 kPa
0 +25 bar/0 +2500 kPa	+25 bar/+2500 kPa	-1 bar/-100 kPa
Absolutdruck		
0 1 bar/0 100 kPa	25 bar/2500 kPa	0 bar abs.
0 2,5 bar/0 250 kPa	25 bar/2500 kPa	0 bar abs.
0 +5 bar/0 +500 kPa	25 bar/2500 kPa	0 bar abs.
0 10 bar/0 1000 kPa	25 bar/2500 kPa	0 bar abs.
0 25 bar/0 2500 kPa	25 bar/2500 kPa	0 bar abs.

Nennmessbereiche und Überlastbarkeit in psi

Nennmessbereich	Übe	erlastbarkeit
	Maximaler Druck	Minimaler Druck
Überdruck		
0 +0.4 psig	+75 psig	-0.7 psig
0 +1.5 psig	+225 psig	-3.0 psig
0 +5 psig	+360 psig	-11.50 psig
0 +15 psig	+360 psig	-14.51 psig
0 +30 psig	+360 psig	-14.51 psig
0 +150 psig	+360 psig	-14.51 psig
0 +300 psig	+360 psig	-14.51 psig
0 +900 psig	+360 psig	-14.51 psig
Absolutdruck		·
0 15 psi	360 psig	0 psi
0 30 psi	360 psig	0 psi
0 150 psi	360 psig	0 psi
0 300 psi	360 psig	0 psi
0 900 psig	360 psig	0 psi

Einstellbereiche

Angaben beziehen sich auf den Nennmessbereich, Druckwerte kleiner als -1 bar können nicht eingestellt werden

Min.-/Max.-Abgleich:

Prozentwert
 Druckwert
 10 ... 110 %
 20 ... 120 %

Zero-/Span-Abgleich:

ZeroSpan-20 ... +95 %-120 ... +120 %

Differenz zwischen Zero und Span max. 120 % des Nennmessbereichs

Max. zulässiger Turn Down Unbegrenzt (empfohlen 20:1)

Einschaltphase

Hochlaufzeit bei Betriebsspannung U.

- ≥ 12 V DC ≤ 9 s - < 12 V DC ≤ 22 s Anlaufstrom (für Hochlaufzeit) ≤ 3.6 mA

Ausgangsgröße

Details zur Betriebsspannung siehe Spannungsversorgung

Ausgangssignal 4 ... 20 mA/HART

Bereich des Ausgangssignals 3,8 ... 20,5 mA/HART (Werkseinstellung)

Erfüllte HART-Spezifikation 7.3 Signalauflösung 0,3 µA

Ausfallsignal Stromausgang (einstellbar) ≤ 3,6 mA, ≥ 21 mA, letzter Messwert⁸⁾

Max. Ausgangsstrom 21,5 mA

Bürde Siehe Bürdenwiderstand unter Spannungsversorgung

Anlaufstrom ≤ 10 mA für 5 ms nach Einschalten. ≤ 3.6 mA

Dämpfung (63 % der Eingangsgröße), 0 ... 999 s

einstellbar

HART-Ausgangswerte gem. HART 7 (Werkseinstellung)9)

- Erster HART-Wert (PV) Linearer Prozentwert

Zweiter HART-Wert (SV)
 Messzellentemperatur (keramische Messzelle)

Dritter HART-Wert (TV)
 Druck

Vierter HART-Wert (QV)
 Elektroniktemperatur

Ausgangsgröße - Zusätzlicher Stromausgang

Details zur Betriebsspannung siehe Spannungsversorgung

Ausgangssignal 4 ... 20 mA (passiv)

Bereich des Ausgangssignals 3,8 ... 20,5 mA (Werkseinstellung)

Signalauflösung 0,3 µA

Ausfallsignal Stromausgang (einstellbar) Letzter gültiger Messwert, ≥ 21 mA, ≤ 3,6 mA

Max. Ausgangsstrom 21,5 mA

⁸⁾ Letzter Messwert bei SIL nicht möglich.

⁹⁾ Die Ausgangswerte können beliebig zugeordnet werden.

Anlaufstrom ≤ 10 mA für 5 ms nach Einschalten, ≤ 3,6 mA

Bürde Bürdenwiderstand siehe Spannungsversorgung

Dämpfung (63 % der Eingangsgröße), 0 ... 999 s

einstellbar

Dynamisches Verhalten Ausgang

Dynamische Kenngrößen, abhängig von Medium und Temperatur

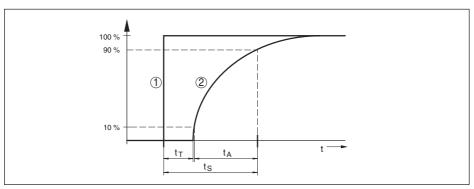


Abb. 39: Verhalten bei sprunghafter Änderung der Prozessgröße. t., Totzeit; t.,: Anstiegszeit; t.,: Sprungantwortzeit

- 1 Prozessgröße
- 2 Ausgangssignal

Totzeit ≤ 50 ms Anstiegszeit ≤ 150 ms

Sprungantwortzeit ≤ 200 ms (ti: 0 s, 10 ... 90 %)

Dämpfung (63 % der Eingangsgröße) 0 ... 999 s, über Menüpunkt "Dämpfung" einstellbar

Zusätzliche Ausgangsgröße - Messzellentemperatur

Bereich -60 ... +150 °C (-76 ... +302 °F)

Auflösung < 0,2 K

Messabweichung

- Bereich 0 ... +100 °C (+32 ... +212 °F) ±2 K

- Bereich -60 ... 0 °C (-76 ... +32 °F) typ. ±4 K

und +100 ... +150 °C (+212 ... +302 °F)

Ausgabe der Temperaturwerte

Anzeige Über das Anzeige- und Bedienmodul

Analog Über den Stromausgang, den zusätzlichen Stromaus-

gang

Digital
 Über das digitale Ausgangssignal (je nach Elektroni-

kausführung)

Referenzbedingungen und Einflussgrößen (nach DIN EN 60770-1)

Referenzbedingungen nach DIN EN 61298-1

- Temperatur +15 ... +25 °C (+59 ... +77 °F)

- Relative Luftfeuchte 45 ... 75 %

- Luftdruck 860 ... 1060 mbar/86 ... 106 kPa (12.5 ... 15.4 psig)

Kennlinienbestimmung Grenzpunkteinstellung nach IEC 61298-2

Kennliniencharakteristik Linear

Referenzeinbaulage stehend, Messmembran zeigt nach unten

Einfluss der Einbaulage < 0,2 mbar/20 Pa (0.003 psig)

Abweichung am Stromausgang durch starke, hochfrequente elektromagnetische Felder im Rahmen der EN 61326-1

 $< \pm 150 \, \mu A$

Messabweichung (nach IEC 60770-1)

Gilt für den **digitalen** Signalausgang (HART, Profibus PA, Foundation Fieldbus) sowie den **analogen** 4 ... 20 mA-Stromausgang und bezieht sich auf die eingestellte Messspanne. Turn down (TD) ist das Verhältnis Nennmessbereich/eingestellte Messspanne.

Die angegebenen Werte entsprechen dem Wert F_{KI} in Kapitel "Berechnung der Gesamtabweichung".

Genauigkeitsklasse	· •	Nichtlinearität, Hysterese und Nicht- wiederholbarkeit bei TD > 5:1
0,1 %	< 0,1 %	< 0,02 % x TD

Einfluss der Medium- bzw. Umgebungstemperatur

Thermische Änderung Nullsignal und Ausgangsspanne durch Mediumtemperatur

Gilt für den **digitalen** Signalausgang (HART, Profibus PA, Foundation Fieldbus) sowie den **analogen** 4 ... 20 mA-Stromausgang und bezieht sich auf die eingestellte Messspanne. Turn down (TD) ist das Verhältnis Nennmessbereich/eingestellte Messspanne.

Die thermische Änderung Nullsignal und Ausgangsspanne entspricht dem Wert F_{τ} in Kapitel "Berechnung der Gesamtabweichung (nach DIN 16086)".

Keramische Messzelle - Standard

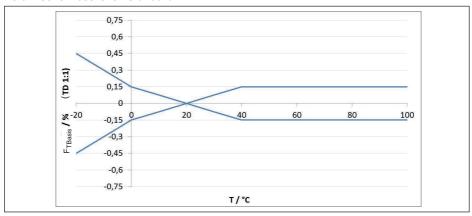


Abb. 40: Basis-Temperaturfehler F_{TBasis} bei TD 1:1

Der Basis-Temperaturfehler in % aus der obigen Grafik kann sich durch Zusatzfaktoren je nach Messzellenausführung (Faktor FMZ) und Turn Down (Faktor FTD) erhöhen. Die Zusatzfaktoren sind in den folgenden Tabellen aufgelistet.

Zusatzfaktor durch Messzellenausführung

	Messzelle	- Standard	Messzelle klimakompensiert, je nach Messbereic		
Messzellenaus- führung	0,1 %	0,1 % (bei Messbereich 25 mbar)	5 bar, 10 bar, 25 bar	1 bar, 2,5 bar	0,4 bar
Faktor FMZ	1	3	1	2	3

Zusatzfaktor durch Turn Down

Der Zusatzfaktor FTD durch Turn Down wird nach folgender Formel errechnet:

$$F_{TD} = 0.5 \times TD + 0.5$$

In der Tabelle sind Beispielwerte für typische Turn Downs aufgelistet.

Turn Down	TD 1:1	TD 2,5 : 1	TD 5:1	TD 10:1	TD 20 : 1
Faktor FTD	1	1,75	3	5,5	10,5

Thermische Änderung Stromausgang durch Umgebungstemperatur

Gilt zusätzlich für den **analogen** 4 ... 20 mA-Stromausgang und bezieht sich auf die eingestellte Messspanne.

Thermische Änderung Stromausgang < 0.05 %/10 K, max. < 0.15 %, jeweils bei -40 ... +80 °C (-40 ... +176 °F)

Die thermische Änderung des Stromausganges entspricht dem Wert F_a in Kapitel "Berechnung der Gesamtabweichung (nach DIN 16086)".

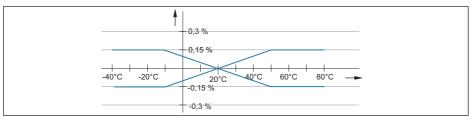


Abb. 41: Thermische Änderung Stromausgang

Langzeitstabilität (gemäß DIN 16086)

Gilt für den jeweiligen **digitalen** Signalausgang (z. B. HART, Profibus PA) sowie für den **analogen** 4 ... 20 mA-Stromausgang unter Referenzbedingungen. Angaben beziehen sich auf die eingestellte Messspanne. Turn down (TD) ist das Verhältnis Nennmessbereich/eingestellte Messspanne.

Langzeitstabilität Nullsignal und Ausgangsspanne

Zeitraum	Messzelle ø 28 mm		Messzelle ø 17,5 mm
	Messbereiche ab 0 0,1 bar (0 10 kPa)	Messbereich 0 +0,025 bar/0 +2,5 kPa	
Ein Jahr	< 0,05 % x TD	< 0,1 % x TD	< 0,1 % x TD
Fünf Jahre	< 0,1 % x TD	< 0,2 % x TD	< 0,2 % x TD
Zehn Jahre	< 0,2 % x TD	< 0,4 % x TD	< 0,4 % x TD

Langzeitstabilität Nullsignal und Ausgangsspanne - Ausführung klimakompensiert

Nennmessbereich in bar/kPa	Nennmessbe- reich in psig	Messzelle ø 28 mm	Messzelle ø 17,5 mm
0 0,4 bar/0 40 kPa	0 6 psig	< (1 % x TD)/Jahr	< (1,5 % x TD)/Jahr
0 1 bar/0 100 kPa	0 15 psig	- < (0,25 % x TD)/Jahr	< (0,375 % x TD)/Jahr
0 2,5 bar/0 250 kPa	0 35 psig	< (0,25 % X 1D)/Jaiii	< (0,375 % X 1D)/Jani
0 5 bar/0 500 kPa	0 75 psig		
0 10 bar/0 1000 kPa	0 150 psig	< (0,1 % x TD)/Jahr	< (0,15 % x TD)/Jahr
0 25 bar/0 2500 kPa	0 350 psig		

Umgebungsbedingungen

Ausführung	Umgebungstemperatur	Lager- und Transporttemperatur
Ausführung mit Verbindungsrohr	-40 +80 °C (-40 +176 °F)	-60 +80 °C (-76 +176 °F)
Ausführung mit Tragkabel FEP, PUR	-20 +80 °C (-4 +176 °F)	-20 +80 °C (-4 +176 °F)
Ausführung mit Tragkabel PE	-20 +60 °C (-4 +140 °F)	-20 +60 °C (-4 +140 °F)
Ausführung IP68 (1 bar) mit Anschlusskabel PE	-20 +60 °C (-4 +140 °F)	-20 +60 °C (-4 +140 °F)

Prozessbedingungen

Prozesstemperatur

Ausführung	Messzellendichtung	Prozesstemperatur
Tragkabel PE	FKM (VP2/A)	-20 +60 °C (-4 +140 °F)
	EPDM (A+P 70.10-02)	
Tragkabel PUR	FKM (VP2/A)	-20 +80 °C (-4 +176 °F)
	EPDM (A+P 70.10-02)	
Tragkabel FEP	FKM (VP2/A)	-20 +100 °C (-4 +212 °F)
	EPDM (A+P 70.10-02)	
	FFKM (Kalrez 6375)	-10 +100 °C (+14 +212 °F)
Verbindungsrohr	FKM (VP2/A)	-20 +100 °C (-4 +212 °F)
	EPDM (A+P 70.10-02)	
	FFKM (Kalrez 6375)	-10 +100 °C (+14 +212 °F)
Messwertaufnehmerwerkstoff PVDF	FKM (VP2/A)	-20 +60 °C (-4 +140 °F)
	EPDM (A+P 70.10-02)	
	FFKM (Kalrez 6375)	-10 +60 °C (+14 +140 °F)
Messwertaufnehmerschutz PE	FKM (VP2/A)	-20 +60 °C (-4 +140 °F)
	EPDM (A+P 70.10-02)	
Flansch GFK/Dichtleiste PVDF	FKM (VP2/A)	-20 +80 °C (-4 +176 °F)
	EPDM (A+P 70.10-02)	
	FFKM (Kalrez 6375)	-10 +80 °C (+14 +176 °F)

Prozessdruck

Zulässiger Prozessdruck siehe Angabe "Process pressure" auf dem Typschild

Mechanische Beanspruchung¹⁰⁾

Vibrationsfestigkeit

- Tragkabel 4 g bei 5 ... 200 Hz nach EN 60068-2-6 (Vibration bei

Resonanz)

- Verbindungsrohr 1 g (bei Längen > 0,5 m (1.64 ft) ist das Rohr zusätzlich

abzustützen)

Schockfestigkeit 50 g, 2,3 ms nach EN 60068-2-27 (mechanischer

Schock)11)

Elektromechanische Daten - Ausführung IP66/IP67 und IP66/IP68 (0,2 bar)¹²⁾

Optionen der Kabeleinführung

Kabeleinführung
 M20 x 1,5; ½ NPT

Kabelverschraubung
 M20 x 1,5, ½ NPT (Kabel-ø siehe Tabelle unten)

Blindstopfen
 M20 x 1,5; ½ NPT

Verschlusskappe
 ½ NPT

¹⁰⁾ Je nach Geräteausführung

¹¹⁾ 2 g bei Gehäuseausführung Edelstahl-Zweikammer

¹²⁾ IP66/IP68 (0,2 bar) nur bei Absolutdruck.

Werkstoff Kabelverschraubung/	Kabeldurchmesser			
Dichtungseinsatz	5 9 mm	6 12 mm	7 12 mm	10 14 mm
PA/NBR	•	•	-	•
Messing, vernickelt/NBR	•	•	-	-
Edelstahl/NBR	-	-	•	-

Aderquerschnitt (Federkraftklemmen)

Massiver Draht, Litze
 Litze mit Aderendhülse
 0,2 ... 2,5 mm² (AWG 24 ... 14)
 0,2 ... 1,5 mm² (AWG 24 ... 16)

Elektromechanische Daten - Ausführung IP68 (25 bar)

Verbindungskabel Messwertaufnehmer - externes Gehäuse, mechanische Daten

Aufbau
 Adern, Zugentlastung, Druckausgleichskapillare,

Schirmgeflecht, Metallfolie, Mantel¹³⁾

Standardlänge
 Max. Länge
 Min. Biegeradius bei 25 °C/77 °F
 5 m (16.40 ft)
 180 m (590.5 ft)
 25 mm (0.985 in)

- Durchmesser ca. 8 mm (0.315 in)

WerkstoffFarbeSchwarz, blau

Verbindungskabel Messwertaufnehmer - externes Gehäuse, elektrische Daten

- Aderquerschnitt 0,5 mm² (AWG 20) - Aderwiderstand 0.037 Ω /m (0.012 Ω /ft)

Elektromechanische Daten - Ausführung Tragkabel IP68 (25 bar)

Tragkabel, mechanische Daten

Aufbau
 Adern, Zugentlastung, Druckausgleichskapillare,

Schirmgeflecht, Metallfolie, Mantel

Standardlänge
Max. Länge
Min. Biegeradius (bei 25 °C/77 °F)
Durchmesser
Farbe Tragkabel PE
5 m (16.40 ft)
25 m (820.2 ft)
25 mm (0.985 in)
ca. 8 mm (0.315 in)
Schwarz, blau

- Farbe Tragkabel PUR/FEP Blau

Tragkabel, elektrische Daten

- Aderquerschnitt 0,5 mm² (AWG 20) - Aderwiderstand R 0,037 Ω /m (0.012 Ω /ft)

Schnittstelle zur externen Anzeige- und Bedieneinheit

Datenübertragung Digital (I²C-Bus)
Verbindungsleitung Vieradrig

¹³⁾ Druckausgleichskapillare nicht bei Ex-d-Ausführung.

Sensorausführung	Aufbau Verbindungsleitung				
	Leitungslänge	Standardleitung	Abgeschirmt		
4 20 mA/HART	50 m				
Modbus	50 111	•	_		
Profibus PA, Foundation Fieldbus	25 m	-	•		

Schnittstelle zum Secondary-Sensor

Datenübertragung Digital (I²C-Bus)

Aufbau Verbindungsleitung vieradrig, abgeschirmt

Max. Leitungslänge 25 m

Integrierte Uhr

Zeitzone werkseitig

Datumsformat Tag.Monat.Jahr

Zeitformat 12 h/24 h

Max. Gangabweichung 10,5 min/Jahr

Zusätzliche Ausgangsgröße - Elektroniktemperatur

Bereich -40 ... +85 °C (-40 ... +185 °F)

Auflösung < 0.1 KMessabweichung $\pm 3 \text{ K}$

Verfügbarkeit der Temperaturwerte

Anzeige Über das Anzeige- und BedienmodulAusgabe Über das jeweilige Ausgangssignal

CET

Spannungsversorgung

Betriebsspannung U_B 9,6 ... 35 V DC

Betriebsspannung U_B mit eingeschalteter 16 ... 35 V DC

Beleuchtung

Verpolungsschutz Integriert

Zulässige Restwelligkeit

- für U_N 12 V DC (9,6 V < U_B < 14 V) \leq 0,7 V_{eff} (16 ... 400 Hz) - für U_N 24 V DC (18 V < U_B < 35 V) \leq 1,0 V_{eff} (16 ... 400 Hz)

Bürdenwiderstand

- Berechnung (U_R - U_{min})/0,022 A

- Beispiel - bei $U_p = 24 \text{ V DC}$ (24 V - 9,6 V)/0,022 A = 655 Ω

Spannungsversorgung - Sensor mit integriertem PLICSMOBILE 81

Betriebsspannung¹⁴⁾ 9.6 ... 32 V DC

¹⁴⁾ Bei einer Spannungsversorgung des Gerätes muss auf eine ausreichende Strombelastbarkeit der Spannungsversorgung geachtet werden. Bei einer Betriebsspannung < 9,6 V muss mit Stromspitzen von bis zu 2 A gerechnet werden.</p>

Leistungsaufnahme¹⁵⁾

Energiesparmodus (9 V/12 V)
 Energiesparmodus (24 V/32 V)
 1,8 mW/3,7 mW

DauerbetriebSpitzenleistung (Messwertversand)11 W

Energiebedarf¹⁶⁾

Messzyklus inkl. Versand
 15 mWh

Sensorversorgung

LeerlaufspannungMax. Strom80 mA

Potenzialverbindungen und elektrische Trennmaßnahmen im Gerät

Elektronik Nicht potenzialgebunden

Bemessungsspannung¹⁷⁾ 500 V AC

Leitende Verbindung Zwischen Erdungsklemme und metallischem Prozess-

anschluss

Elektrische Schutzmaßnahmen¹⁸⁾

Gehäusewerkstoff	Ausführung	Schutzart nach IEC 60529	Schutzart nach NEMA
Kunststoff	Einkammer	IDCC/IDC7	T 4V
	Zweikammer	IP66/IP67	Type 4X
Aluminium	Einkammer	IP66/IP67	Type 4X
		IP66/IP68 (0,2 bar)	Type 6P
		IP68 (1 bar)	-
	Zweikammer	IP66/IP67	Type 4X
		IP66/IP68 (0,2 bar)	Type 6P
Edelstahl (elektropoliert)	Einkammer	IP66/IP67	Type 4X
		IP69K	
Edelstahl (Feinguss)	Einkammer	IP66/IP67	Type 4X
		IP66/IP68 (0,2 bar)	Type 6P
		IP68 (1 bar)	-
	Zweikammer	IP66/IP67	Type 4X
		IP66/IP68 (0,2 bar)	Type 6P
Edelstahl	Messwertaufnehmer bei Ausführung mit externem Gehäuse	IP68 (25 bar)	-

Anschluss des speisenden Netzteils

Netze der Überspannungskategorie III

¹⁵⁾ Die aufgeführten Leistungsangaben beeinhalten die Spannungsversorgung eines HART-Sensors mit 20 mA.

¹⁶⁾ Der aufgeführte Energiebedarf beeinhaltet die Spannungsversorgung eines HART-Sensors mit 4 mA (Multidrop-Betrieb) und 12 V Betriebsspannung.

¹⁷⁾ Galvanische Trennung zwischen Elektronik und metallischen Geräteteilen

¹⁸⁾ Schutzart IP66/IP68 (0,2 bar) nur in Verbindung mit Absolutdruck.

Einsatzhöhe über Meeresspiegel

bis 2000 m (6562 ft) standardmäßig

- mit vorgeschaltetem Überspannungs- bis 5000 m (16404 ft)

Verschmutzungsgrad¹⁹⁾ 2 Schutzklasse (IEC/EN 61010-1) Ш

11.2 Berechnung der Gesamtabweichung

Die Gesamtabweichung eines Druckmessumformers gibt den maximal zu erwartenden Messfehler in der Praxis an. Sie wird auch max, praktische Messabweichung oder Gebrauchsfehler genannt.

Nach DIN 16086 ist die Gesamtabweichung F_{total} die Summe aus Grundabweichung F_{ner} und Langzeitstabilität F

$$F_{total} = F_{perf} + F_{stab}$$

Die Grundabweichung F_{perf} wiederum setzt sich aus der thermischen Änderung von Nullsignal und Ausgangsspanne F_T (Temperaturfehler) sowie der Messabweichung F_{KI} zusammen:

$$F_{port} = \sqrt{((F_T)^2 + (F_{KI})^2)}$$

Die thermische Änderung von Nullsignal und Ausgangsspanne F_τ wird in Kapitel "Technische Daten" angegeben. Der Basis-Temperaturfehler F, wird dort grafisch dargestellt. Je nach Messzellenausführung und Turn Down muss dieser Wert noch mit zusätzlichen Faktoren FMZ und FTD multipliziert werden:

Auch diese Werte sind in Kapitel "Technische Daten" angegeben.

Dies gilt zunächst für den digitalen Signalausgang über HART, Profibus PA, Foundation Fieldbus oder Modbus.

Beim 4 ... 20 mA-Ausgang kommt noch die thermische Änderung des Stromausganges F. dazu:

$$F_{perf} = \sqrt{((F_T)^2 + (F_{KI})^2 + (F_a)^2)}$$

Zur besseren Übersicht sind hier die Formelzeichen zusammengefasst:

- F_{total}: Gesamtabweichung

- F^{luat}: Grundabweichung F_{perf}: Grundabweichung F_{stab}: Langzeitstabilität F_T: Thermische Änderung von Nullsignal und Ausgangsspanne (Temperaturfehler)
- F_{KI}: Messabweichung
- F.: Thermische Änderung des Stromausganges
- FMZ: Zusatzfaktor Messzellenausführung
- FTD: Zusatzfaktor Turn Down

11.3 Praxisbeispiel

Daten

Füllstandmessung in einem Wasserbehälter, 1.600 mm Höhe, entspricht 0,157 bar (157 kPa), Mediumtemperatur 50 °C

VEGABAR 86 mit Messbereich 0.4 bar, Messabweichung < 0.1 %, Messzellen-ø 28 mm

1. Berechnung des Turn Down

TD = 0.4 bar/0.157 bar. TD = 2.6 : 1

¹⁹⁾ Bei Einsatz mit erfüllter Gehäuseschutzart.

2. Ermittlung Temperaturfehler $F_{\scriptscriptstyle T}$

Die erforderlichen Werte werden den technischen Daten entnommen:

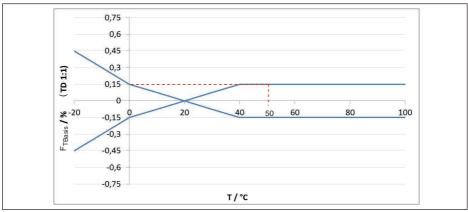


Abb. 42: Ermittlung des Basis-Temperaturfehlers für das Beispiel oben: $F_{TBasis} = 0,15\%$

Messzellenausfüh- rung	Messzelle - Stan- dard	Messzelle klimakompensiert, je nach Messbereich		
	0,1 %	10 bar, 25 bar	1 bar, 2,5 bar	0,4 bar
Faktor FMZ	1	1	2	3

Tab. 26: Ermittlung des Zusatzfaktors Messzelle für das Beispiel oben: $F_{MZ} = \frac{1}{2}$

Turn Down	TD 1:1	TD 2,5 : 1	TD 5 : 1	TD 10:1	TD 20 : 1
Faktor FTD	1	1.75	3	5.5	10.5

Tab. 27: Ermittlung des Zusatzfaktors Turn Down für das Beispiel oben: $F_{TD} = \frac{1,75}{1}$

$$F_T = F_{TBasis} \times F_{MZ} \times F_{TD}$$

$$F_{T} = 0.15 \% \times 1 \times 1.75$$

$$F_{\tau} = \frac{0.26 \%}{0.26 \%}$$

3. Ermittlung Messabweichung und Langzeitstabilität

Die erforderlichen Werte für Messabweichung $F_{\rm KI}$ und Langzeitstabilität $F_{\rm stab}$ werden den technischen Daten entnommen:

Genauigkeitsklasse	Nichtlinearität, Hysterese und Nichtwiederholbarkeit		
	TD ≤ 5:1	TD > 5:1	
0,1 %	< 0,1 %	< 0,02 % x TD	

Tab. 28: Ermittlung der Messabweichung aus der Tabelle: $F_{\kappa_l} = \frac{0.1 \%}{100}$

VEGABAR 86

Zeitraum	Messzelle ø 28 mm		Messzelle ø 17,5 mm	
	Alle Messbereiche	Messbereich 0 +0,025 bar/0 +2,5 kPa	_	
Ein Jahr	< 0,05 % x TD	< 0,1 % x TD	< 0,1 % x TD	
Fünf Jahre	< 0,1 % x TD	< 0,2 % x TD	< 0,2 % x TD	
Zehn Jahre	< 0,2 % x TD	< 0,4 % x TD	< 0,4 % x TD	

VEGABAR 87

Zeitraum	Alle Messbereiche	Messbereich 0 +0,025 bar/0 +2,5 kPa
Ein Jahr	< 0,05 % x TD	< 0,1 % x TD
Fünf Jahre	< 0,1 % x TD	< 0,2 % x TD
Zehn Jahre	< 0,2 % x TD	< 0,4 % x TD

Tab. 29: Ermittlung der Langzeitstabilität aus der Tabelle, Betrachtung für ein Jahr: F_{stab} = 0,05 % x TD = $0.05 \% \times 2.6 = 0.13 \%$

4. Berechnung der Gesamtabweichung - HART-Signal

- 1. Schritt: Grundgenauigkeit Fnerf

$$F_{perf} = \sqrt{((F_T)^2 + (F_{KI})^2)}$$

$$F_{\tau} = 0.26 \%$$

$$F_{perf} = \sqrt{(0.26 \%)^2 + (0.1 \%)^2}$$

$$F_{perf} = 0.28 \%$$

- 2. Schritt: Gesamtabweichung F

$$F_{total} = F_{perf} + F_{stab}$$

$$F_{stab} = (0.05 \% x TD)$$

$$F_{stab} = (0.05 \% x 2.5)$$

$$F_{stab} = 0.13 \%$$

$$F_{total} = 0.28 \% + 0.13 \% = 0.41 \%$$

5. Berechnung der Gesamtabweichung - 4 ... 20 mA-Signal

- 1. Schritt: Grundgenauigkeit Fnerf

$$F_{perf} = \sqrt{((F_T)^2 + (F_{KI})^2 + (F_a)^2)}$$

$$F_{-} = 0.26 \%$$

$$F = 0.15\%$$

$$F_{perf} = \sqrt{(0.26 \%)^2)^2 + (0.1 \%)^2 + (0.15 \%)^2}$$

- 2. Schritt: Gesamtabweichung F, total

$$F_{a} = 0.15\%$$
 $F_{a} = 0.15\%$
 $F_{perf} = \sqrt{(0.26\%)^{2}}$
 $F_{perf} = 0.32\%$
 $F_{total} = F_{perf} + F_{stab}$

$$F_{\text{stab}} = (0.05 \% \text{ x TD})$$

$$F_{stab} = (0.05 \% x 2.5)$$

$$F_{\text{stab}} = \frac{0.13 \%}{0.13 \%}$$

$$F_{total} = 0.32 \% + 0.13 \% = 0.45 \%$$

Die Gesamtabweichung der Messeinrichtung beträgt somit 0,45 %.

Messabweichung in mm: 0,45 % von 1600 mm = 7 mm

Das Beispiel zeigt, dass der Messfehler in der Praxis deutlich höher sein kann, als die Grundgenauigkeit. Ursachen sind Temperatureinfluss und Turn Down.

Der thermische Änderung des Stromausganges ist in diesem Beispiel vernachlässigbar klein.

11.4 Maße

Die folgenden Maßzeichnungen stellen nur einen Ausschnitt der möglichen Ausführungen dar. Detaillierte Maßzeichnungen können auf www.vega.com unter "Downloads" und "Zeichnungen" heruntergeladen werden.

Kunststoffgehäuse

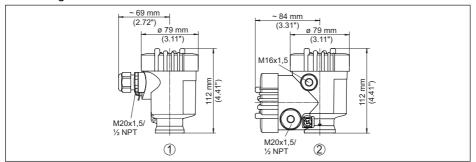


Abb. 43: Gehäuseausführungen in Schutzart IP66/IP67 (mit eingebautem Anzeige- und Bedienmodul vergrößert sich die Gehäusehöhe um 9 mm/0.35 in)

- 1 Kunststoff-Einkammer
- 2 Kunststoff-Zweikammer

Aluminiumgehäuse

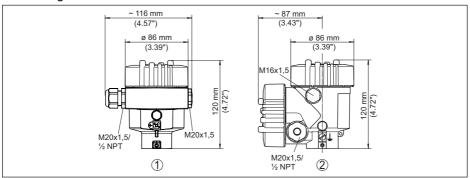


Abb. 44: Gehäuseausführungen in Schutzart IP66/IP67 (mit eingebautem Anzeige- und Bedienmodul vergrößert sich die Gehäusehöhe um 18 mm/0.71 in)

- 1 Aluminium-Einkammer
- 2 Aluminium-Zweikammer

Aluminiumgehäuse in Schutzart IP66/IP68 (1 bar)

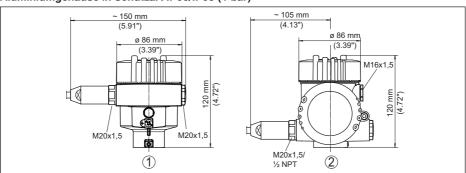


Abb. 45: Gehäuseausführungen in Schutzart IP66/IP68 (1 bar), (mit eingebautem Anzeige- und Bedienmodul vergrößert sich die Gehäusehöhe um 18 mm/0.71 in)

- 1 Aluminium-Einkammer
- 2 Aluminium-Zweikammer

Edelstahlgehäuse

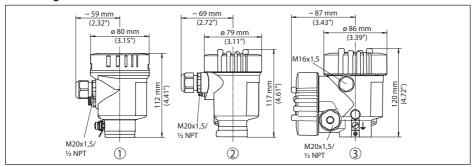


Abb. 46: Gehäuseausführungen in Schutzart IP66/IP67 (mit eingebautem Anzeige- und Bedienmodul vergrößert sich die Gehäusehöhe um 9 mm/0.35 in)

- 1 Edelstahl-Einkammer (elektropoliert)
- 2 Edelstahl-Einkammer (Feinguss)
- 3 Edelstahl-Zweikammer (Feinguss)

Edelstahlgehäuse in Schutzart IP66/IP68 (1 bar)

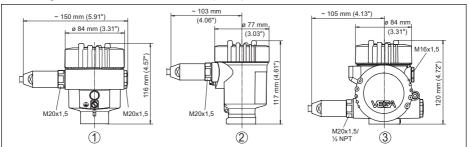


Abb. 47: Gehäuseausführungen in Schutzart IP66/IP68 (1 bar), (mit eingebautem Anzeige- und Bedienmodul vergrößert sich die Gehäusehöhe um 9 mm/0.35 in bzw. 18 mm/0.71 in)

- 1 Edelstahl-Einkammer (elektropoliert)
- 2 Edelstahl-Einkammer (Feinguss)
- 3 Edelstahl-Zweikammer (Feinguss)

Edelstahlgehäuse in Schutzart IP69K

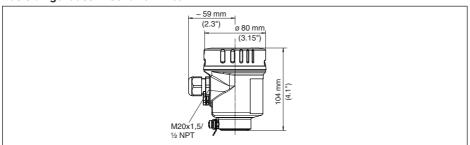


Abb. 48: Gehäuseausführung in Schutzart IP69K (mit eingebautem Anzeige- und Bedienmodul vergrößert sich die Gehäusehöhe um 9 mm/0.35 in)

1 Edelstahl-Einkammer (elektropoliert)

Externes Gehäuse bei IP68-Ausführung

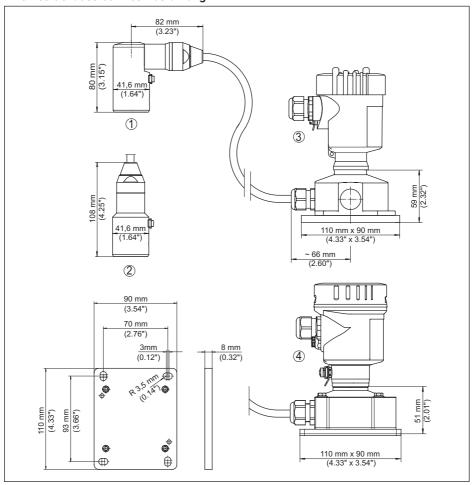


Abb. 49: VEGABAR 86, IP68-Ausführung mit externem Gehäuse

- 1 Seitlicher Kabelabgang
- 2 Axialer Kabelabgang
- 3 Kunststoff-Einkammer
- 4 Edelstahl-Einkammer
- 5 Dichtung 2 mm (0.079 in), (nur bei 3A-Zulassung)

VEGABAR 86, Messwertaufnehmer 32 mm

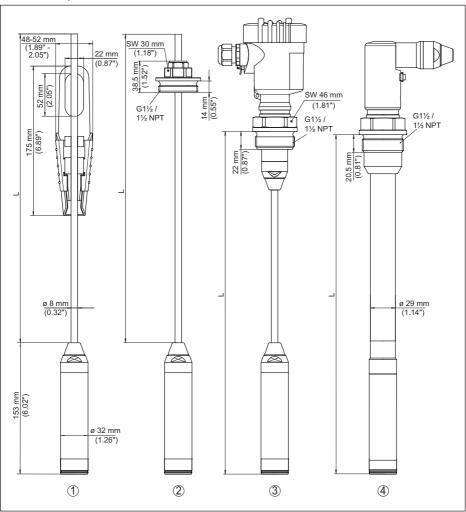


Abb. 50: VEGABAR 86, Messwertaufnehmer 32 mm

- 1 Abspannklemme
- 2 Verstellbare Tragkabelverschraubung G11/2, 11/2 NPT
- 3 Gewinde G1½, 1½ NPT
- Kabelabgang mit Gewinde G1½, 1½ NPT
- . Gesamtlänge aus Konfigurator

VEGABAR 86, Messwertaufnehmer 22 mm

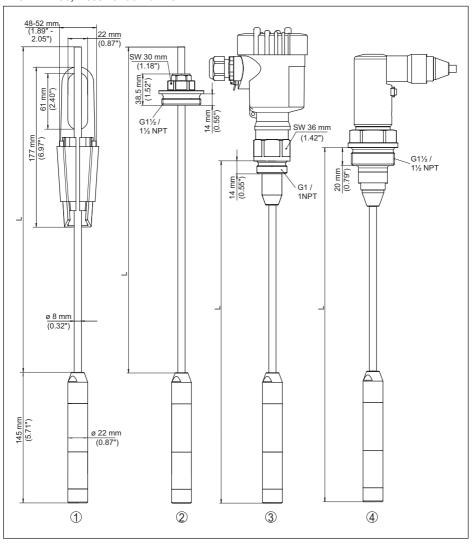


Abb. 51: VEGABAR 86, Messwertaufnehmer 22 mm

- 1 Abspannklemme
- 2 Verstellbare Tragkabelverschraubung G1½, 1½ NPT
- 3 Gewinde G1, 1 NPT
- 4 Kabelabgang mit Gewinde G11/2, 11/2 NPT
- L Gesamtlänge aus Konfigurator

VEGABAR 86, Kunststoffausführung

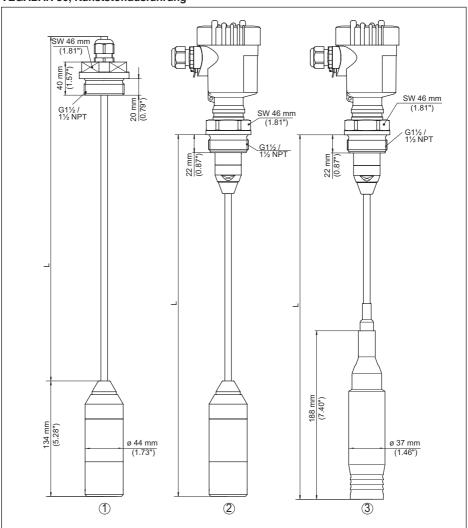


Abb. 52: VEGABAR 86, Kunststoffausführung

- 1 PVDF, mit Verschraubung G1½, 1½ NPT
- 2 PVDF, mit Gewinde G1½, 1½ NPT
- 3 PE-überzogen, mit Gewinde G1½, 1½ NPT
- L Gesamtlänge aus Konfigurator

VEGABAR 86. Flanschanschluss

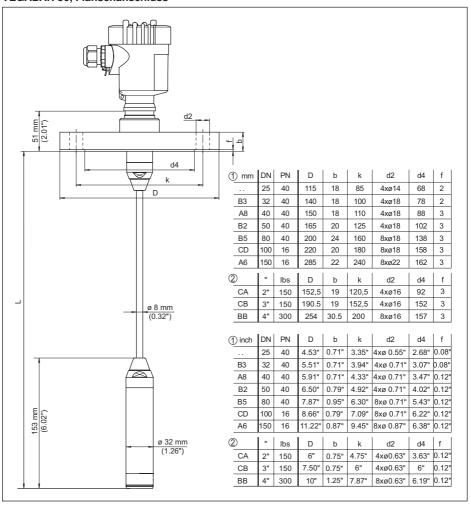


Abb. 53: VEGABAR 86, Flanschanschluss (Beispiel: Messwertaufnehmer 32 mm)

- 1 Flansche nach DIN 2501
- 2 Flansche nach ASME B16.5
- L Gesamtlänge aus Konfigurator

VEGABAR 86, Hygieneanschluss

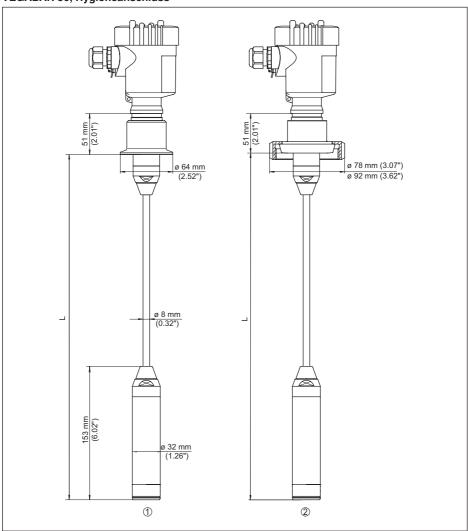


Abb. 54: VEGABAR 86, aseptische Anschlüsse

- 1 Clamp 2" PN 16 (ø 64 mm) DIN 32676, ISO 2852
- 2 Rohrverschraubung DN 50
- L Gesamtlänge aus Konfigurator

VEGABAR 86, Gewindeausführung

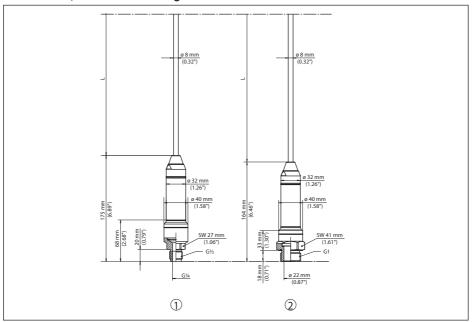


Abb. 55: VEGABAR 86, Gewindeausführung

- 1 Gewinde G½ innen G¼
- 2 Gewinde ½ NPT, Bohrung ø 11 mm
- 3 Gewinde G1
- L Gesamtlänge aus Konfigurator

11.5 Gewerbliche Schutzrechte

VEGA product lines are global protected by industrial property rights. Further information see www.vega.com.

VEGA Produktfamilien sind weltweit geschützt durch gewerbliche Schutzrechte.

Nähere Informationen unter www.vega.com.

Les lignes de produits VEGA sont globalement protégées par des droits de propriété intellectuelle. Pour plus d'informations, on pourra se référer au site www.vega.com.

VEGA lineas de productos están protegidas por los derechos en el campo de la propiedad industrial. Para mayor información revise la pagina web www.vega.com.

Линии продукции фирмы ВЕГА защищаются по всему миру правами на интеллектуальную собственность. Дальнейшую информацию смотрите на сайте <u>www.vega.com</u>.

VEGA系列产品在全球享有知识产权保护。

进一步信息请参见网站<www.vega.com。

11.6 Warenzeichen

Alle verwendeten Marken sowie Handels- und Firmennamen sind Eigentum ihrer rechtmäßigen Eigentümer/Urheber.

INDEX

Α

Abgleich 36, 37

- Einheit 34

- Übersicht 35

Anzeige einstellen 39, 40

В

Bediensystem 32 Bedienung 33

D

Dämpfung 37
Datum/Uhrzeit einstellen 41
Defaultwerte 44
Dichtungskonzept 10
Differenzdruckmessung 9
Displaybeleuchtung 40
Druckausgleich 16, 17, 18

_

- Ex-d 16

EDD (Enhanced Device Description) 51 Elektrischer Anschluss 19, 20 Erdung 19 Ereignisspeicher 52

F

Fehlercodes 54, 55 Füllstandmessung 18

Н

HART 43

.

Lagekorrektur 35 Linearisierung 37

M

Messanordnung
– Im offenen Behälter 18
Messwertspeicher 52

Ν

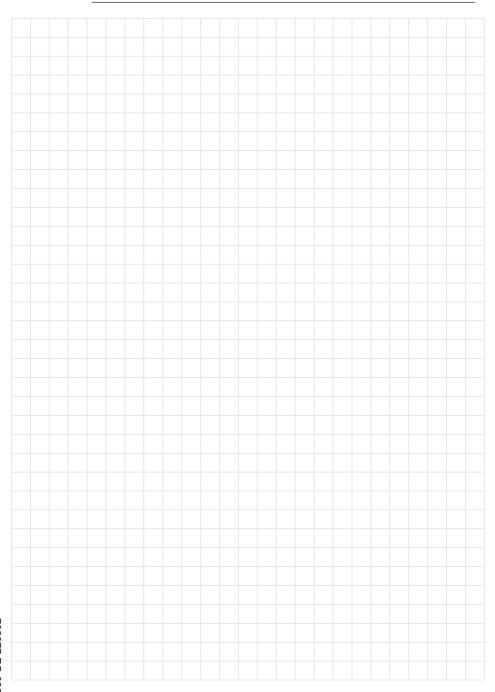
NAMUR NE 107 53

R

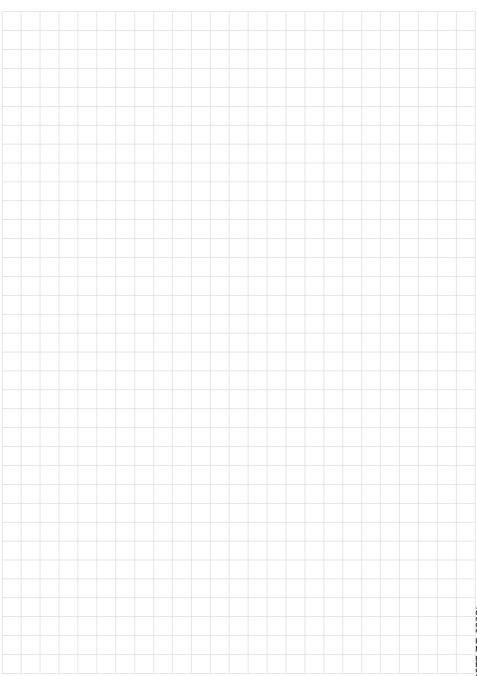
Reparatur 59 Reset 41

S

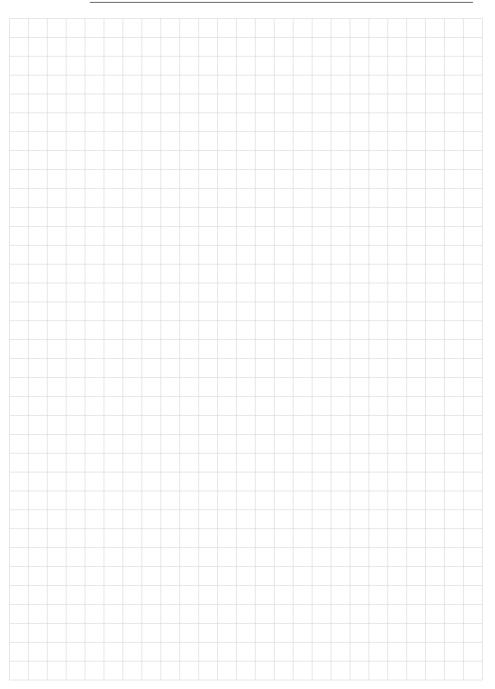
Schleppzeiger 40 Sensoreinstellungen kopieren 42 Service-Hotline 57 Service-Zugang 42 Simulation 41 Sprache umschalten 39 Störungsbeseitigung 56 Stromausgang 38, 43


W

Wartung 52


Z

Zusätzlicher Stromausgang 38



Druckdatum:

Die Angaben über Lieferumfang, Anwendung, Einsatz und Betriebsbedingungen der Sensoren und Auswertsysteme entsprechen den zum Zeitpunkt der Drucklegung vorhandenen Kenntnissen.
Änderungen vorbehalten

© VEGA Grieshaber KG, Schiltach/Germany 2022

45039-DE-220502