Operating Instructions

Pressure transmitter with metallic measuring cell

VEGABAR 83

Modbus and Levelmaster protocol

Document ID: 46295

Contents

1	Abou	bout this document4			
	1.1	Function	4		
	1.2	Target group	4		
	1.3	Symbols used	4		
2	·				
2	-	•			
	2.1	Authorised personnel			
	2.2	Appropriate use			
	2.3	Warning about incorrect use			
	2.4	General safety instructions			
	2.5	EU conformity			
	2.6	NAMUR recommendations	6		
	2.7	Installation and operation in the USA and Canada			
	2.8	Environmental instructions	6		
3	Prod	uct description	7		
	3.1	Configuration	7		
	3.2	Principle of operation			
	3.3	Supplementary cleaning procedures			
	3.4	Packaging, transport and storage	11		
	3.5	Accessories			
4		nting			
	4.1	General instructions			
	4.2	Instructions for oxygen applications			
	4.3	Ventilation and pressure compensation			
	4.4	Process pressure measurement			
	4.5	Level measurement			
	4.6	External housing	19		
5	Con	necting to power supply and bus system	20		
	5.1	Preparing the connection	20		
	5.2	Connecting			
	5.3	Wiring plan	23		
	5.4	External housing with version IP68 (25 bar)	24		
	5.5	Switch-on phase	26		
6	Cat .	ip the sensor with the display and adjustment module	27		
0	6.1	Insert display and adjustment module	27		
	6.2	Adjustment system			
	6.3	Measured value indication.			
	6.4	Parameter adjustment - Quick setup			
	6.5	Parameter adjustment - Quick Setup			
	6.6	Menu overview			
	6.7	Save parameter adjustment data			
7		ng up sensor and Modbus interface with PACTware	43		
	7.1	Connect the PC			
	7.2	Parameterization			
	7.3	Set instrument address			
	7.4	Save parameter adjustment data	46		

47 47 48 50 51 52 52 53 54
52 52 53 53 54 54
54
54
54
54
55
55
69
70
/ 🔾
73
73 75

Safety instructions for Ex areas:

Take note of the Ex specific safety instructions for Ex applications. These instructions are attached as documents to each instrument with Ex approval and are part of the operating instructions.

Editing status: 2022-04-20

1 About this document

1.1 Function

This instruction provides all the information you need for mounting, connection and setup as well as important instructions for maintenance, fault rectification, the exchange of parts and the safety of the user. Please read this information before putting the instrument into operation and keep this manual accessible in the immediate vicinity of the device.

1.2 Target group

This operating instructions manual is directed to trained personnel. The contents of this manual must be made available to the qualified personnel and implemented.

1.3 Symbols used

☐ Document ID

This symbol on the front page of this instruction refers to the Document ID. By entering the Document ID on www.vega.com you will reach the document download.

Information, note, tip: This symbol indicates helpful additional information and tips for successful work.

Note: This symbol indicates notes to prevent failures, malfunctions, damage to devices or plants.

Caution: Non-observance of the information marked with this symbol may result in personal injury.

Warning: Non-observance of the information marked with this symbol may result in serious or fatal personal injury.

Danger: Non-observance of the information marked with this symbol results in serious or fatal personal injury.

Ex applications

This symbol indicates special instructions for Ex applications.

Lic

The dot set in front indicates a list with no implied sequence.

1 Sequence of actions

Numbers set in front indicate successive steps in a procedure.

Disposal

This symbol indicates special instructions for disposal.

2 For your safety

2.1 Authorised personnel

All operations described in this documentation must be carried out only by trained, qualified personnel authorised by the plant operator.

During work on and with the device, the required personal protective equipment must always be worn.

2.2 Appropriate use

The VEGABAR 83 is a pressure transmitter for process pressure and hydrostatic level measurement.

You can find detailed information about the area of application in chapter " *Product description*".

Operational reliability is ensured only if the instrument is properly used according to the specifications in the operating instructions manual as well as possible supplementary instructions.

2.3 Warning about incorrect use

Inappropriate or incorrect use of this product can give rise to application-specific hazards, e.g. vessel overfill through incorrect mounting or adjustment. Damage to property and persons or environmental contamination can result. Also, the protective characteristics of the instrument can be impaired.

2.4 General safety instructions

This is a state-of-the-art instrument complying with all prevailing regulations and directives. The instrument must only be operated in a technically flawless and reliable condition. The operator is responsible for the trouble-free operation of the instrument. When measuring aggressive or corrosive media that can cause a dangerous situation if the instrument malfunctions, the operator has to implement suitable measures to make sure the instrument is functioning properly.

The safety instructions in this operating instructions manual, the national installation standards as well as the valid safety regulations and accident prevention rules must be observed by the user.

For safety and warranty reasons, any invasive work on the device beyond that described in the operating instructions manual may be carried out only by personnel authorised by the manufacturer. Arbitrary conversions or modifications are explicitly forbidden. For safety reasons, only the accessory specified by the manufacturer must be used.

To avoid any danger, the safety approval markings and safety tips on the device must also be observed.

2.5 EU conformity

The device fulfils the legal requirements of the applicable EU directives. By affixing the CE marking, we confirm the conformity of the instrument with these directives.

The EU conformity declaration can be found on our homepage.

Due to the design of its process fittings, the device does not subject of EU pressure device directive if it is operated at process pressures < 200 bar. 1)

2.6 NAMUR recommendations

NAMUR is the automation technology user association in the process industry in Germany. The published NAMUR recommendations are accepted as the standard in field instrumentation.

The device fulfils the requirements of the following NAMUR recommendations:

- NE 21 Electromagnetic compatibility of equipment ²⁾
- NE 53 Compatibility of field devices and display/adjustment components
- NE 107 Self-monitoring and diagnosis of field devices

For further information see www.namur.de.

2.7 Installation and operation in the USA and Canada

This information is only valid for USA and Canada. Hence the following text is only available in the English language.

Installations in the US shall comply with the relevant requirements of the National Electrical Code (ANSI/NFPA 70).

Installations in Canada shall comply with the relevant requirements of the Canadian Electrical Code.

2.8 Environmental instructions

Protection of the environment is one of our most important duties. That is why we have introduced an environment management system with the goal of continuously improving company environmental protection. The environment management system is certified according to DIN EN ISO 14001.

Please help us fulfil this obligation by observing the environmental instructions in this manual:

- Chapter " Packaging, transport and storage"
- Chapter " Disposal"

¹⁾ Exception: Versions with measuring ranges from 250 bar. These are subject of the EU Pressure Device Directive.

²⁾ Not fulfilled when connecting to an external display and adjustment unit.

3 Product description

3.1 Configuration

Scope of delivery

The scope of delivery encompasses:

VEGABAR 83 pressure transmitter

The further scope of delivery encompasses:

- Documentation
 - Quick setup guide VEGABAR 83
 - Test certificate for pressure transmitters
 - Instructions for optional instrument features
 - Ex-specific " Safety instructions" (with Ex versions)
 - If necessary, further certificates

Information:

Optional instrument features are also described in this operating instructions manual. The respective scope of delivery results from the order specification.

Scope of this operating instructions

This operating instructions manual applies to the following instrument versions:

- Hardware from 1.0.0
- Software from 1.3.6

Note:

You can find the hardware and software version of the instrument as follows:

- On the type plate of the electronics module
- In the adjustment menu under " Info"

Type label

The type label contains the most important data for identification and use of the instrument:

Fig. 1: Layout of the type label (example)

- 1 Product code
- 2 Field for approvals
- 3 Technical data
- 4 Serial number of the instrument
- 5 QR code
- 6 Symbol of the device protection class
- 7 ID numbers, instrument documentation

Serial number - Instrument search

The type label contains the serial number of the instrument. With it you can find the following instrument data on our homepage:

- Product code (HTML)
- Delivery date (HTML)
- Order-specific instrument features (HTML)
- Operating instructions and quick setup guide at the time of shipment (PDF)
- Test certificate (PDF) optional

Move to "www.vega.com" and enter in the search field the serial number of your instrument.

Alternatively, you can access the data via your smartphone:

- Download the VEGA Tools app from the " Apple App Store" or the " Google Play Store"
- Scan the QR-code on the type label of the device or
- Enter the serial number manually in the app

Electronics design

The instrument contains two different electronics in its housing chambers:

- The Modbus electronics for power supply and communication with the Modbus-RTU
- The sensor electronics for the actual measuring tasks

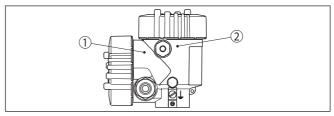


Fig. 2: Position of Modbus and sensor electronics

- 1 Modbus electronics
- 2 Sensor electronics

3.2 Principle of operation

Application area

VEGABAR 83 is suitable for applications in virtually all industries. It is used for the measurement of the following pressure types.

- Gauge pressure
- Absolute pressure
- Vacuum

Measured products

Measured products are gases, vapours and liquids.

The device is especially suitable for applications with higher temperatures and high pressures.

Measured variables

The VEGABAR 83 is suitable for the measurement of the following process variables:

Process pressure

Level

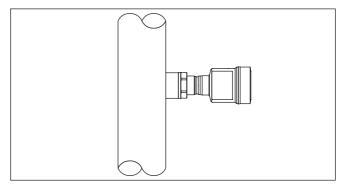


Fig. 3: Process pressure measurement VEGABAR 83

Measuring system pressure

The process pressure acts on the sensor element via the process diaphragm. The process pressure causes a resistance change which is converted into a corresponding output signal and output as measured value.

Piezoresistive sensor element

Measuring ranges up to 40 bar: piezoresistive sensor element with internal isolating liquid is used.

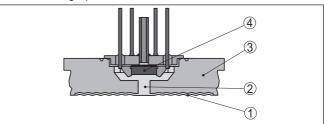


Fig. 4: Configuration of the measuring system with piezoresistive sensor element

- 1 Diaphragm
- 2 Isolating liquid
- 3 Base element
- 4 Sensor element

Strain gauge (DMS) sensor element

For measuring ranges above 100 bar, a strain gauge (DMS) sensor element (dry system) is used.

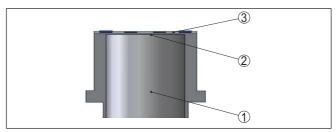


Fig. 5: Configuration of the measuring system with strain gauge (DMS) sensor element

- 1 Pressure cylinder
- 2 Process diaphragm
- 3 Sensor element

Measuring system temperature

A temperature sensor on the respective sensor element for pressure records the current process temperature. The temperature value is output via:

- The display and adjustment module
- The current output or the additional current output
- The digital signal output

Ceramic/metallic measuring cell

With small measuring ranges or higher temperatures, the ceramic/metallic METEC® measuring cell is the measuring unit. It consists of the ceramic-capacitive CERTEC® measuring cell and a special, temperature-compensated chemical seal system.

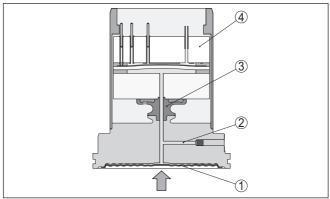


Fig. 6: Configuration of the METEC® measuring cell

- 1 Process diaphragm
- 2 Isolating liquid
- 3 FeNi adapter
- 4 CERTEC® measuring cell

Measuring system temperature

Temperature sensors in the ceramic diaphragm and the ceramic base of the CERTEC® measuring cell detect the actual process temperature. The temperature value is output via:

- The display and adjustment module
- The current output or the additional current output
- The digital signal output

Pressure types

The measuring cell design depends on the selected pressure type.

Relative pressure: the measuring cell is open to the atmosphere. The ambient pressure is detected in the measuring cell and compensated. It thus has no influence on the measured value.

Absolute pressure: the measuring cell contains vacuum and is encapsulated. The ambient pressure is not compensated and does hence influence the measured value.

Relative pressure, climate-compensated: the measuring cell is evacuated and encapsulated. The ambient pressure is detected through a reference sensor in the electronics and compensated. It thus has no influence on the measured value.

Seal concept

The measuring system is completely welded and thus sealed against the process.

The process fitting is sealed against the process by a suitable seal. It must be provided by the customer, depending on the process fitting also included in the scope of delivery, see chapter " *Technical data*", " *Materials and weights*".

3.3 Supplementary cleaning procedures

The VEGABAR 83 is also available in the version " Oil, grease and silicone-free". These instruments have passed through a special cleaning procedure to remove oil, grease and paint-wetting impairment substances (PWIS).

The cleaning is carried out on all wetted parts as well as on surfaces accessible from outside. To keep the purity level, the instruments are immediately packed in plastic foil after the cleaning process. The purity level remains as long as the instrument is kept in the closed original packaging.

Caution:

The VEGABAR 83 in this version may not be used in oxygen applications. For this purpose, instruments are available in the special version " Oil, grease and silicone-free for oxygen applications".

3.4 Packaging, transport and storage

Packaging

Your instrument was protected by packaging during transport. Its capacity to handle normal loads during transport is assured by a test based on ISO 4180.

The packaging consists of environment-friendly, recyclable cardboard. For special versions, PE foam or PE foil is also used. Dispose of the packaging material via specialised recycling companies.

Transport

Transport must be carried out in due consideration of the notes on the transport packaging. Nonobservance of these instructions can cause damage to the device.

Transport inspection

The delivery must be checked for completeness and possible transit damage immediately at receipt. Ascertained transit damage or concealed defects must be appropriately dealt with.

Storage

Up to the time of installation, the packages must be left closed and stored according to the orientation and storage markings on the outside.

Unless otherwise indicated, the packages must be stored only under the following conditions:

- Not in the open
- Dry and dust free
- Not exposed to corrosive media
- Protected against solar radiation
- Avoiding mechanical shock and vibration

Storage and transport temperature

- Storage and transport temperature see chapter "Supplement -Technical data - Ambient conditions"
- Relative moisture 20 ... 85 %

Lifting and carrying

With instrument weights of more than 18 kg (39.68 lbs) suitable and approved equipment must be used for lifting and carrying.

3.5 Accessories

The instructions for the listed accessories can be found in the download area on our homepage.

Display and adjustment module

The display and adjustment module is used for measured value indication, adjustment and diagnosis.

The integrated Bluetooth module (optional) enables wireless adjustment via standard adjustment devices.

VEGACONNECT

The interface adapter VEGACONNECT enables the connection of communication-capable instruments to the USB interface of a PC.

Secondary sensors

Secondary sensors of VEGABAR series 80 enable in conjunction with VEGABAR 83 an electronic differential pressure measurement.

VEGADIS 81

The VEGADIS 81 is an external display and adjustment unit for VEGA plics® sensors.

VEGADIS adapter

The VEGADIS adapter is an accessory part for sensors with double chamber housings. It enables the connection of VEGADIS 81 to the sensor housing via an M12 x 1 plug.

Protective cover

The protective cover protects the sensor housing against soiling and intense heat from solar radiation.

46295-EN-220624

Flanges

Screwed flanges are available in different versions according to the following standards: DIN 2501, EN 1092-1, BS 10, ASME B 16.5, JIS B 2210-1984, GOST 12821-80.

Welded socket, threaded and hygienic adapter

Welded sockets are used to connect the devices to the process.

Threaded and hygienic adapters enable simple adaptation of devices with standard threaded fittings to process-side hygiene connections.

4 Mounting

4.1 General instructions

Process conditions

Note:

For safety reasons, the instrument must only be operated within the permissible process conditions. You can find detailed information on the process conditions in chapter " *Technical data*" of the operating instructions or on the type label.

Hence make sure before mounting that all parts of the instrument exposed to the process are suitable for the existing process conditions.

These are mainly:

- · Active measuring component
- Process fitting
- Process seal

Process conditions in particular are:

- Process pressure
- Process temperature
- Chemical properties of the medium
- Abrasion and mechanical influences

Protection against moisture

Protect your instrument against moisture ingress through the following measures:

- Use a suitable connection cable (see chapter " Connecting to power supply")
- Tighten the cable gland or plug connector
- Lead the connection cable downward in front of the cable entry or plug connector

This applies mainly to outdoor installations, in areas where high humidity is expected (e.g. through cleaning processes) and on cooled or heated vessels.

Note:

Make sure that during installation or maintenance no moisture or dirt can get inside the instrument.

To maintain the housing protection, make sure that the housing lid is closed during operation and locked, if necessary.

Screwing in

Devices with threaded fitting are screwed into the process fitting with a suitable wrench via the hexagon.

See chapter " Dimensions" for wrench size.

Warning:

The housing or the electrical connection may not be used for screwing in! Depending on the device version, tightening can cause damage, e. g. to the rotation mechanism of the housing.

Vibrations

Avoid damages on the device by lateral forces, for example by vibrations. It is thus recommended to fix the devices with process fitting

thread G1/2 of plastic at the installation site via a suitable measuring instrument holder.

If there is strong vibration at the mounting location, the instrument version with external housing should be used. See chapter " External housina".

Permissible process pressure (MWP) - Device

The permissible process pressure range is specified by "MWP" (Maximum Working Pressure) on the type label, see chapter " Structure". The MWP takes the element of the measuring cell and processing fitting combination with the weakest pressure into consideration and may applied permanently. The specification refers to a reference temperature of +20 °C (+68 °F). It also applies when a measuring cell with a higher measuring range than the permissible pressure range of the process fitting is installed order-related.

In order to prevent damage to the device, a test pressure may only exceed the specified MWP briefly by 1.5 times at reference temperature. The pressure stage of the process fitting as well as the overload resistance of the measuring cell are taken into consideration here (see chapter " Technical Data").

In addition, a temperature derating of the process fitting, e. g. with flanges, can limit the permissible process pressure range according to the respective standard.

Permissible process pressure (MWP) - Mounting accessory

The permissible process pressure range is stated on the type label. The instrument should only be operated with these pressures if the mounting accessory used also fulfils these values. This should be ensured by suitable flanges, welded sockets, tension rings with Clamp connections, sealings, etc.

Temperature limits

Higher process temperatures often mean also higher ambient temperatures. Make sure that the upper temperature limits stated in chapter " Technical data" for the environment of the electronics housing and connection cable are not exceeded.

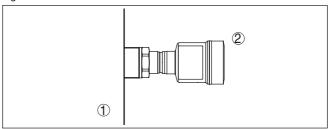


Fig. 7: Temperature ranges

- Process temperature
- 2 Ambient temperature

Instructions for oxygen applications

4.2

Oxygen applications Oxygen and other gases can be explosive when brought into contact with oils, grease and plastics, so the following measures must also be taken:

- All components of the system, e.g. measuring instruments, must be cleaned in accordance with the requirements of recognized regulations or standards
- Depending on the seal material, certain temperatures and pressures must not be exceeded in oxygen applications, see chapter "
 Technical data"

Danger:

Instruments for oxygen applications must be unpacked just before mounting. After removing the protective cover of the process fitting, the label "O₂" will be visible on the process fitting. Penetration of oil, grease and dirt should be avoided. Danger of explosion!

4.3 Ventilation and pressure compensation

Filter element - Function

The filter element in the electronics housing has the following functions:

- Ventilation of the electronics housing
- Atmospheric pressure compensation (with relative pressure measuring ranges)

Caution:

The filter element causes a time-delayed pressure compensation. When quickly opening/closing the housing cover, the measured value can change for approx. 5 s by up to 15 mbar.

For an effective ventilation, the filter element must be always free from buildup. In case of horizontal mounting, turn the housing so that the filter element points downward after the instrument is installed. This provides better protection against buildup.

Caution:

Do not use a high-pressure cleaner. The filter element could be damaged, which would allow moisture into the housing.

The following paragraphs describe how the filter element is arranged in the different instrument versions.

Filter element - Position

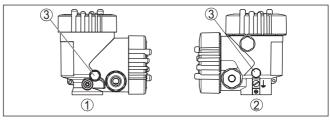


Fig. 8: Position of the filter element

- 1 Plastic double chamber housing
- 2 Aluminium, stainless steel (precision casting) double chamber
- 3 Filter element

Measurement setup in gases

4.4 Process pressure measurement

Keep the following in mind when setting up the measuring system:

• Mount the instrument above the measuring point

Possible condensation can then drain off into the process line.

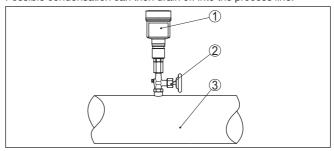


Fig. 9: Measurement setup for process pressure measurement of gases in pipelines

- 1 VEGABAR 83
- 2 Blocking valve
- 3 Pipeline

Measurement setup in vapours

Keep the following in mind when setting up the measuring system:

- Connect via a siphon
- Do not insulate the siphon
- Fill the siphon with water before setup

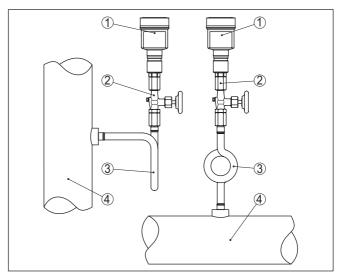


Fig. 10: Measurement setup for the process pressure measurement of gases in pipelines

- 1 VEGABAR 83
- 2 Blocking valve
- 3 Siphon in U or circular form
- 4 Pipeline

A protective accumulation of water is formed through condensation in the pipe bends. Even in applications with hot steam, a medium temperature < 100 °C on the transmitter is ensured.

Measurement setup in liquids

Keep the following in mind when setting up the measuring system:

Mount the instrument below the measuring point

The effective pressure line is always filled with liquid and gas bubbles can bubble up to the process line.

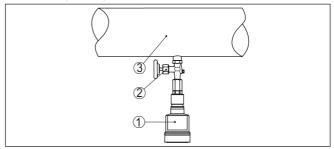


Fig. 11: Measurement setup for the process pressure measurement of liquids in pipelines

- 1 VEGABAR 83
- 2 Blocking valve
- 3 Pipeline

Measurement setup

4.5 Level measurement

Keep the following in mind when setting up the measuring system:

- Mount the instrument below the min. level
- Do not mount the instrument close to the filling stream or emptying area
- Mount the instrument so that it is protected against pressure shocks from the stirrer

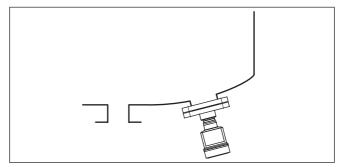


Fig. 12: Measurement setup for the level measurement

4.6 External housing

Configuration

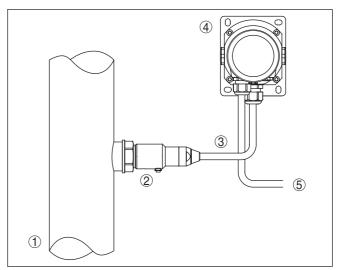


Fig. 13: Configuration, process module, external housing

- 1 Pipeline
- 2 Process module
- 3 Connection cable process assembly External housing
- 4 External housing
- 5 Signal cable

5 Connecting to power supply and bus system

5.1 Preparing the connection

Safety instructions

Always keep in mind the following safety instructions:

- Carry out electrical connection by trained, qualified personnel authorised by the plant operator
- If overvoltage surges are expected, overvoltage arresters should be installed

Warning:

Only connect or disconnect in de-energized state.

Voltage supply

The operating voltage and the digital bus signal are routed via separate two-wire connection cables.

The data for power supply are specified in chapter " Technical data".

Note

Power the instrument via an energy-limited circuit (power max. 100 W) acc. to IEC 61010-1, e.g.

- Class 2 power supply unit (acc. to UL1310)
- SELV power supply unit (safety extra-low voltage) with suitable internal or external limitation of the output current

Connection cable

The instrument is connected with standard two-wire, twisted cable suitable for RS 485. If electromagnetic interference is expected which is above the test values of EN 61326 for industrial areas, shielded cable should be used.

Use cable with round cross section for instruments with housing and cable gland. Use a cable gland suitable for the cable diameter to ensure the seal effect of the cable gland (IP protection rating).

Make sure that the entire installation is carried out according to the Fieldbus specification. In particular, make sure that the bus is terminated with suitable terminating resistors.

Cable screening and grounding

Make sure that the cable screen and grounding are carried out according to Fieldbus specification. We recommend to connect the cable screening to ground potential on both ends.

In systems with potential equalisation, connect the cable screening directly to ground potential at the power supply unit and the sensor. The cable screening in the sensor must be connected directly to the internal ground terminal. The ground terminal outside on the housing must be connected to the potential equalisation (low impedance).

Cable glands

Metric threads:

In the case of instrument housings with metric thread, the cable glands are screwed in at the factory. They are sealed with plastic plugs as transport protection.

Note:

You have to remove these plugs before electrical connection.

NPT thread:

In the case of instrument housings with self-sealing NPT threads, it is not possible to have the cable entries screwed in at the factory. The free openings for the cable glands are therefore covered with red dust protection caps as transport protection.

Note:

Prior to setup you have to replace these protective caps with approved cable glands or close the openings with suitable blind plugs.

On plastic housings, the NPT cable gland or the Conduit steel tube must be screwed into the threaded insert without grease.

Max. torque for all housings, see chapter " Technical data".

5.2 Connecting

Connection technology

The voltage supply and signal output are connected via the springloaded terminals in the housing.

Connection to the display and adjustment module or to the interface adapter is carried out via contact pins in the housing.

Information:

The terminal block is pluggable and can be removed from the electronics. To do this, lift the terminal block with a small screwdriver and pull it out. When reinserting the terminal block, you should hear it snap in.

Connection procedure

Proceed as follows:

- 1. Unscrew the housing lid
- Loosen compression nut of the cable gland and remove blind plug
- Remove approx. 10 cm (4 in) of the cable mantle (signal output), strip approx. 1 cm (0.4 in) insulation from the ends of the individual wires
- 4. Insert the cable into the sensor through the cable entry

Fig. 14: Connection steps 5 and 6

5. Insert the wire ends into the terminals according to the wiring plan

Information:

Solid cores as well as flexible cores with wire end sleeves are inserted directly into the terminal openings. In case of flexible cores without end sleeves, press the terminal from above with a small screwdriver, the terminal opening is then free. When the screwdriver is released, the terminal closes again.

- Check the hold of the wires in the terminals by lightly pulling on them
- Connect the cable screening to the internal ground terminal, connect the outer ground terminal to potential equalisation in case of power supply via low voltage
- Connect the lead cable for voltage supply in the same way according to the wiring plan, in addition connect the ground conductor to the inner ground terminal when powered with mains voltage.
- 9. Tighten the compression nut of the cable entry gland. The seal ring must completely encircle the cable
- 10. Screw the housing lid back on

The electrical connection is finished.

Information:

The terminal blocks are pluggable and can be removed from the housing insert. To do this, lift the terminal block with a small screwdriver and pull it out. When inserting the terminal block again, you should hear it snap in.

Overview

5.3 Wiring plan

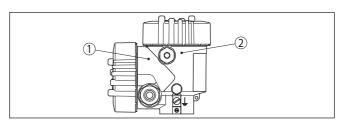


Fig. 15: Position of connection compartment (Modbus electronics) and electronics compartment (sensor electronics)

- 1 Connection compartment
- 2 Electronics compartment

Electronics compartment

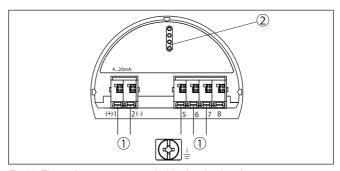


Fig. 16: Electronics compartment - double chamber housing

- 1 Internal connection to the connection compartment
- 2 For display and adjustment module or interface adapter

Connection compartment



Fig. 17: Connection compartment

- 1 USB interface
- 2 Slide switch for integrated termination resistor (120 Ω)
- 3 Modbus signal
- 4 Voltage supply

Terminal	Function	Polarity
1	Voltage supply	+

Terminal	Function	Polarity
2	Voltage supply	-
3	Modbus signal D0	+
4	Modbus signal D1	-
5	Function ground when installing according to CSA (Canadian Standards Association)	

5.4 External housing with version IP68 (25 bar)

Overview

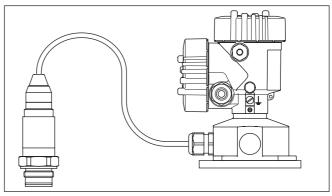


Fig. 18: VEGABAR 83 in IP68 version 25 bar with axial cable outlet, external housing

Electronics and connection compartment for power supply

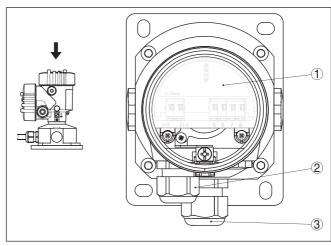


Fig. 19: Electronics and connection compartment

- 1 Electronics module
- 2 Cable gland for voltage supply
- 3 Cable gland for connection cable, transmitter

Terminal compartment, housing socket

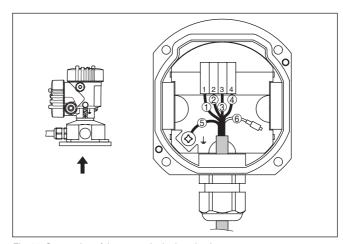


Fig. 20: Connection of the sensor in the housing base

- 1 Yellow
- 2 White
- 3 Red
- 4 Black
- 5 Shielding
- 6 Breather capillaries

Connection compartment

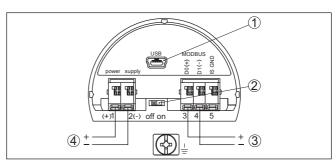


Fig. 21: Connection compartment

- 1 USB interface
- 2 Slide switch for integrated termination resistor (120 Ω)
- 3 Modbus signal
- 4 Voltage supply

Terminal	Function	Polarity
1	Voltage supply	+
2	Voltage supply	-
3	Modbus signal D0	+
4	Modbus signal D1	-

Terminal	Function	Polarity
	Function ground when installing according to CSA (Canadian Standards Association)	

5.5 Switch-on phase

After connecting the instrument to power supply or after a voltage recurrence, the instrument carries out a self-check:

- Internal check of the electronics
- Indication of a status message on the display or PC

Then the actual measured value is output to the signal cable. The value takes into account settings that have already been carried out, e.g. default setting.

6 Set up the sensor with the display and adjustment module

6.1 Insert display and adjustment module

The display and adjustment module can be inserted into the sensor and removed again at any time. You can choose any one of four different positions - each displaced by 90°. It is not necessary to interrupt the power supply.

Proceed as follows:

- 1. Unscrew the housing lid
- 2. Place the display and adjustment module on the electronics in the desired position and turn it to the right until it snaps in.
- 3. Screw housing lid with inspection window tightly back on

Disassembly is carried out in reverse order.

The display and adjustment module is powered by the sensor, an additional connection is not necessary.

Fig. 22: Insertion of the display and adjustment module

Note:

If you intend to retrofit the instrument with a display and adjustment module for continuous measured value indication, a higher lid with an inspection glass is required.

6.2 Adjustment system

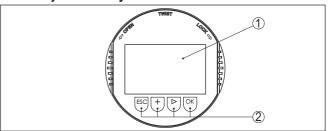


Fig. 23: Display and adjustment elements

- 1 LC display
- 2 Adjustment keys

Key functions

IOK1 kev:

- Move to the menu overview
- Confirm selected menu
- Edit parameter
- Save value

[->] key:

- Change measured value presentation
- Select list entry
- Select menu items
- Select editing position

[+] key:

- Change value of the parameter

[ESC] key:

- Interrupt input
- Jump to next higher menu

Adjustment system

The instrument is operated via the four keys of the display and adjustment module. The individual menu items are shown on the LC display. You can find the function of the individual keys in the previous illustration.

via magnetic pen

Adjustment system - keys With the Bluetooth version of the display and adjustment module you can also adjust the instrument with the magnetic pen. The pen operates the four keys of the display and adjustment module right through the closed lid (with inspection window) of the sensor housing.

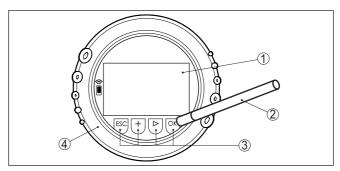


Fig. 24: Display and adjustment elements - with adjustment via magnetic pen

- 1 LC display
- 2 Magnetic pen
- 3 Adjustment keys
- 4 Lid with inspection window

Time functions

When the [+] and [->] keys are pressed quickly, the edited value, or the cursor, changes one value or position at a time. If the key is pressed longer than 1 s, the value or position changes continuously.

When the *[OK]* and *[ESC]* keys are pressed simultaneously for more than 5 s, the display returns to the main menu. The menu language is then switched over to " *English*".

Approx. 60 minutes after the last pressing of a key, an automatic reset to measured value indication is triggered. Any values not confirmed with *[OK]* will not be saved.

6.3 Measured value indication

Measured value indication

With the [->] key you can move between three different indication modes.

In the first view, the selected measured value is displayed in large digits.

In the second view, the selected measured value and a respective bargraph presentation are displayed.

In the third view, the selected measured value as well as a second selectable value, e.g. the temperature, are displayed.

With the " **OK**" key you move (during the initial setup of the instrument) to the selection menu " *Language*".

Selection language

In this menu item, you can select the national language for further parameterization.

With the "[->]" button, you can select the requested language, with " OK" you confirm the selection and move to the main menu.

You can change your selection afterwards with the menu item " Setup - Display, Menu language".

6.4 Parameter adjustment - Quick setup

To quickly and easily adapt the sensor to the application, select the menu item " *Quick setup*" in the start graphic on the display and adjustment module.

Select the individual steps with the [->] key.

After the last step, " Quick setup terminated successfully" is displayed briefly.

The return to the measured value indication is carried out through the [->] or [ESC] keys or automatically after 3 s

Noto

You can find a description of the individual steps in the quick setup quide of the sensor.

You can find " Extended adjustment" in the next sub-chapter.

6.5 Parameter adjustment - Extended adjustment

For technically demanding measuring points, you can carry out extended settings in " Extended adjustment".

Main menu

The main menu is divided into five sections with the following functions:

Setup: Settings e. g. for measurement loop name, application, units, position correction, adjustment, signal output, disable/enable operation

Display: Settings, e.g., for language, measured value display, lighting

Diagnosis: Information, for example, of device status, peak value, simulation

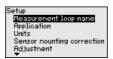
Additional adjustments: date/time, reset, copy function

Info: Instrument name, hardware and software version, calibration date, sensor features

For optimum setting of the measuring point, the individual submenu items in the main menu item " Setup" should be selected one after the other and provided with the correct parameters. If possible, go through the items in the given sequence.

The submenu points are described below.

6.5.1 Setup


Measurement loop name

In the menu item " Sensor TAG" you edit a twelve-digit measurement loop designation.

You can enter an unambiguous designation for the sensor, e.g. the measurement loop name or the tank or product designation. In digital systems and in the documentation of larger plants, a singular designation must be entered for exact identification of individual measuring points.

The available digits include:

- Letters from A ... Z
- Numbers from 0 ... 9
- Special characters +, -, /, -

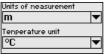
Application

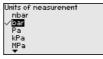
In this menu item you activate/deactivate the Secondary Device for electronic differential pressure and select the application.

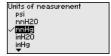
VEGABAR 83 can be used for process pressure and level measurement. The setting in the delivery status is process pressure measurement. The mode can be changed in this adjustment menu.

If you have connected **no** Secondary Device, you confirm this with " *Deactivate*".

Depending on the selected application, different subchapters in the following adjustment steps are important. There you can find the individual adjustment steps.

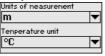

Enter the requested parameters via the appropriate keys, save your settings with *[OK]* and jump to the next menu item with the *[ESC]* and the *[->]* key.




Units

In this menu item, the adjustment units of the instrument are determined. The selection determines the unit displayed in the menu items "Min. adjustment (Zero)" and "Max. adjustment (Span)".

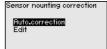
Unit of measurement:



If the level should be adjusted in a height unit, the density of the medium must also be entered later during the adjustment.

In addition, the temperature unit of the instrument is specified. The selection determines the unit displayed in menu items " *Peak value, temperature*" and "in the variables of the digital output signal".

Temperature unit:


Enter the requested parameters via the appropriate keys, save your settings with *[OK]* and jump to the next menu item with the *[ESC]* and the *[->]* key.

Position correction

Especially with chemical seal systems, the installation position of the instrument can shift (offset) the measured value. Position correction compensates this offset. In the process, the actual measured value is taken over automatically. With relative pressure measuring cells a manual offset can also be carried out.

i

Note:

If the current measured value is automatically accepted, it must not be falsified by medium coverage or static pressure.

With the manual position correction, the offset value can be determined by the user. Select for this purpose the function " *Edit*" and enter the requested value.

Save your settings with **[OK]** and move with **[ESC]** and **[->]** to the next menu item.

After the position correction is carried out, the actual measured value is corrected to 0. The corrective value appears with an inverse sign as offset value in the display.

The position correction can be repeated as often as necessary. However, if the sum of the corrective values exceeds 20 % of the nominal measuring range, then no position correction is possible.

Adjustment

VEGABAR 83 always measures pressure independently of the process variable selected in the menu item " *Application*". To output the

selected process variable correctly, an allocation of the output signal to 0 % and 100 % must be carried out (adjustment).

With the application "Level", the hydrostatic pressure, e.g. with full and empty vessel, is entered for adjustment. See following example:

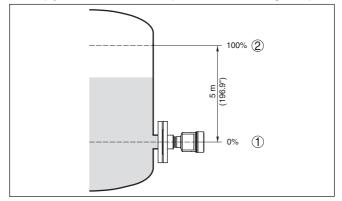


Fig. 25: Parameter adjustment example Min./max. adjustment, level measurement

- 1 Min. level = 0 % corresponds to 0.0 mbar
- 2 Max. level = 100 % corresponds to 490.5 mbar

If these values are not known, an adjustment with filling levels of e.g. $10\,\%$ and $90\,\%$ is also possible. By means of these settings, the real filling height is then calculated.

The actual product level during this adjustment is not important, because the min./max. adjustment is always carried out without changing the product level. These settings can be made ahead of time without the instrument having to be installed.

Note:

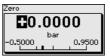
If the adjustment ranges are exceeded, the entered value will not be accepted. Editing can be interrupted with *[ESC]* or corrected to a value within the adjustment ranges.

For the other process variables such as e.g. process pressure, differential pressure or flow, the adjustment is performed in like manner.

Zero adjustment

Proceed as follows:

Select the menu item " Setup" with [->] and confirm with [OK].
 Now select with [->] the menu item " Zero adjustment" and confirm with [OK].



Edit the mbar value with [OK] and set the cursor to the requested position with [->].

- 3. Set the requested mbar value with [+] and store with [OK].
- 4. Go with [ESC] and [->] to the span adjustment

The zero adjustment is finished.

Information:

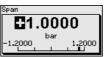
The Zero adjustment shifts the value of the span adjustment. The span, i.e. the difference between these values, however, remains unchanged.

For an adjustment with pressure, simply enter the actual measured value indicated at the bottom of the display.

If the adjustment ranges are exceeded, the message " *Outside* parameter *limits*" appears. The editing procedure can be aborted with *[ESC]* or the displayed limit value can be accepted with *[OK]*.

Span adjustment

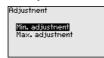
Proceed as follows:


 Select with [->] the menu item Span adjustment and confirm with [OK].

Edit the mbar value with [OK] and set the cursor to the requested position with [->].

3. Set the requested mbar value with [+] and store with [OK].

For an adjustment with pressure, simply enter the actual measured value indicated at the bottom of the display.


If the adjustment ranges are exceeded, the message " *Outside* parameter limits" appears. The editing procedure can be aborted with *[ESC]* or the displayed limit value can be accepted with *[OK]*.

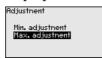
The span adjustment is finished.

Min. adjustment - Level

Proceed as follows:

 Select the menu item " Setup" with [->] and confirm with [OK]. Now select with [->] the menu item " Adjustment", then " Min. adjustment" and confirm with [OK].

- Edit the percentage value with [OK] and set the cursor to the requested position with [->].
- 3. Set the requested percentage value (e.g. 10 %) with [+] and save with [OK]. The cursor jumps now to the pressure value.
- Enter the pressure value corresponding to the min. level (e.g. 0 mbar).
- Save settings with [OK] and move with [ESC] and [->] to the max. adjustment.


The min. adjustment is finished.

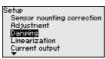
For an adjustment with filling, simply enter the actual measured value indicated at the bottom of the display.

Max. adjustment - Level

Proceed as follows:

 Select with [->] the menu item Max. adjustment and confirm with [OK].

- Edit the percentage value with [OK] and set the cursor to the requested position with [->].
- 3. Set the requested percentage value (e.g. 90 %) with [+] and save with [OK]. The cursor jumps now to the pressure value.
- 4. Enter the pressure value for the full vessel (e.g. 900 mbar) corresponding to the percentage value.
- 5. Save settings with [OK]


The max. adjustment is finished.

For an adjustment with filling, simply enter the actual measured value indicated at the bottom of the display.

Damping

To damp process-dependent measured value fluctuations, set an integration time of 0 ... 999 s in this menu item. The increment is 0.1 s.

The set damping is effective for level and process pressure measurement as well as for all applications of electronic differential pressure measurement.

The default setting is a damping of 0 s.

Linearisation

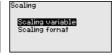
A linearization is necessary for all vessels in which the vessel volume does not increase linearly with the level - e.g. a horizontal cylindrical or spherical tank - and the indication or output of the volume is required. Corresponding linearization curves are preprogrammed for these vessels. They represent the correlation between the level percentage and vessel volume. The linearization applies to the measured value indication and the current output.

With flow measurement and selection "Linear" display and output (percentage/current) are linear to "Differential pressure". This can be used, for example, to feed a flow computer.

With flow measurement and selection " *Extraction by root*"display and output (percentage/current) are linear to " **Flow**". ³⁾

With flow in two directions (bidirectional) a negative differential pressure is also possible. This must already be taken into account in menu item " Min. adjustment flow".

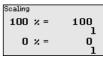
Caution:


Note the following, if the respective sensor is used as part of an overfill protection system according to WHG:

If a linearisation curve is selected, the measuring signal is no longer necessarily linear to the filling height. This must be considered by the user especially when setting the switching point on the limit signal transmitter.

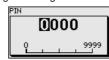
Scaling (1)

In menu item " Scaling" you define the scaling variable and the scaling unit for the level value on the display, e.g. volume in I.



Scaling (2)

In menu item " Scaling (2)" you define the scaling format on the display and the scaling of the measured level value for 0 % and 100 %.



Lock/Unlock adjustment

In the menu item "Lock/unlock adjustment" you safeguard the sensor parameters against unauthorized or unintentional modifications.

This is done by entering a four-digit PIN.

With active PIN, only the following adjustment functions are possible without entering a PIN:

- Select menu items and show data
- Read data from the sensor into the display and adjustment module
- ³⁾ The device assumes an approximately constant temperature and static pressure and converts the differential pressure into the flow rate via the characteristic curve extracted by root.

Releasing the sensor adjustment is also possible in any menu item by entering the PIN.

Caution:

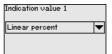
With active PIN, adjustment via PACTware/DTM and other systems is also blocked.

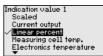
6.5.2 Display

Language

This menu item enables the setting of the requested national language.

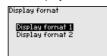
The following languages are available:


- German
- Enalish
- French
- Spanish
- Russian
- Italian
- Dutch
- Portuguese
- Japanese
- Chinese
- Polish
- Czech
- Turkish


In delivery status, the VEGABAR 83 is set to English.

Display value 1 and 2

In this menu item, you define which measured value is displayed.




The setting in the delivery status for the display value is " Lin. percent".

Display format 1 and 2

In this menu item you define the number of decimal positions with which the measured value is displayed.

The setting in the delivery status for the display format is " Automatic".

Backlight

The display and adjustment module has a backlight for the display. In this menu item you can switch on the lighting. You can find the required operating voltage in chapter " *Technical data*".

Display
Menu language
Indication value 1
Indication value 2
Display format
Backlight

Backlight Switched on

In delivery status, the lighting is switched on.

Device status

In this menu item, the device status is displayed.

In case of error, e.g. the error code F017, e.g. the error description "

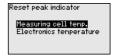
*Adjustment span too small" and a four digit figure are displayed for service purposes. You can find the error codes with description, reason as well as rectification in chapter " *Asset Management".

6.5.3 Diagnostics

Peak value, pressure

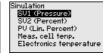
The respective min. and max. measured values are saved in the sensor. The two values are displayed in menu item " *Peak values, pressure*".

In another window you can carry out a reset of the peak values separately.


Peak value, temperature

The respective min. and max. measured values of the measuring cell and the electronics temperature are stored in the sensor. In menu item " *Peak value, temperature*", both values are displayed.

In another window you can carry out a reset of the two peak values separately.



Simulation

In this menu item you simulate measured values. Hence, the signal path can be tested via the bus system to the input card of the control system.

Simulation running Pressure **0.0000 bar**

Deactivate simulation?

Simulation

Select the requested simulation variable and set the requested value.

To deactivate the simulation, you have to push the **[ESC]** key and confirm the message " Deactivate simulation" with the **[OK]** key.

Caution:

During simulation, the simulated value is output as digital signal. The status message along with the Asset Management function is "

Information:

The sensor terminates the simulation automatically after 60 minutes.

6.5.4 Additional adjustments

In this menu item, you adjust the internal clock of the sensor. There is no adjustment for summer/winter (daylight saving) time.

Reset

Date/Time

After a reset, certain parameter adjustments made by the user are reset.

The following reset functions are available:

Delivery status: Restores the parameter settings at the time of shipment from the factory, incl. the order-specific settings. Any user-defined linearisation curve as well as the measured value memory are deleted.

Basic settings: Resets the parameter settings, incl. special parameters, to the default values of the respective instrument. Any programmed linearisation curve as well as the measured value memory are deleted.

Note:

You can find the default values of the device in chapter " Menu overview".

Copy instrument settings

The instrument settings are copied with this function. The following functions are available:

- Read from sensor: Read data from sensor and store into the display and adjustment module
- Write into sensor: Store data from the display and adjustment module back into the sensor

The following data or settings for adjustment of the display and adjustment module are saved:

• All data of the menu " Setup" and " Display"

- In the menu " Additional adjustments" the items " Reset, Date/ Time"
- The user-programmable linearization curve

Copy instr. settings
Copy instrument
settings?

The copied data are permanently saved in an EEPROM memory in the display and adjustment module and remain there even in case of power failure. From there, they can be written into one or more sensors or kept as backup for a possible electronics exchange.

Note:

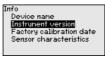
Before the data are saved in the sensor, a safety check is carried out to determine if the data match the sensor. In the process the sensor type of the source data as well as the target sensor are displayed. If the data do not match, a fault message is outputted or the function is blocked. The data are saved only after release.

Special parameters

In this menu item you gain access to the protected area where you can enter special parameters. In exceptional cases, individual parameters can be modified in order to adapt the sensor to special requirements.

Change the settings of the special parameters only after having contacted our service staff.

6.5.5 Info

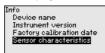

Device name

In this menu item, you can read out the instrument name and the instrument serial number:

Instrument version

In this menu item, the hardware and software version of the sensor is displayed.

Factory calibration date


In this menu item, the date of factory calibration of the sensor as well as the date of the last change of sensor parameters are displayed via the display and adjustment module or via the PC.

Sensor characteristics

In this menu item, the features of the sensor such as approval, process fitting, seal, measuring range, electronics, housing and others are displayed.

6.6 Menu overview

The following tables show the adjustment menu of the instrument. Depending on the instrument version or application, all menu items may not be available or some may be differently assigned.

Setup

Menu item	Parameter	Default value
Measurement loop name		Sensor
Application	Application	Level
	Secondary sensor for electronic differential pressure	Deactivated
Units	Unit of measurement	mbar (with nominal measuring range ≤ 400 mbar)
		bar (with nominal measuring ranges ≥ 1 bar)
	Temperature unit	°C
Position correction		0.00 bar
Adjustment	Zero/Min. adjustment	0.00 bar
		0.00 %
	Span/Max. adjustment	Nominal measuring range in bar
		100.00 %
Damping	Integration time	1 s
Lock adjustment	Blocked, released	Released

Display

Menu item	Default value
Menu language	Selected language
Displayed value 1	Current output in %
Displayed value 2	Ceramic measuring cell: Measuring cell temperature in °C
	Metallic measuring cell: Electronics temperature in °C
Display format	Number of positions after the decimal point, automatically

Menu item	Default value
Backlight	Switched on

Diagnostics

Menu item	Parameter	Default value
Device status		-
Peak value	Pressure	Current pressure measured value
Pointer function temp.	Temperature	Actual measuring cell and electronic temperature
Simulation		Process pressure

Additional adjustments

Menu item	Parameter	Default value
Date/Time		Actual date/Actual time
Reset	Delivery status, basic settings	
Copy instrument settings	Read from sensor, write into sensor	
Scaling	Scaling size	Volume in I
	Scaling format	0 % corresponds to 0 I
		100 % corresponds to 0 I
Special parameters	Service-Login	No reset

Info

Menu item	Parameter
Device name	VEGABAR 83
Instrument version	Hardware and software version
Factory calibration date	Date
Sensor characteristics	Order-specific characteristics

6.7 Save parameter adjustment data

On paper

We recommended writing down the adjustment data, e.g. in this operating instructions manual, and archiving them afterwards. They are thus available for multiple use or service purposes.

In the display and adjustment module

If the instrument is equipped with a display and adjustment module, the parameter adjustment data can be saved therein. The procedure is described in menu item " *Copy device settings*".

7 Setting up sensor and Modbus interface with PACTware

7.1 Connect the PC

To the sensor electronics

Connection of the PC to the sensor electronics is carried out via the interface adapter VEGACONNECT.

Scope of the parameter adjustment:

Sensor electronics

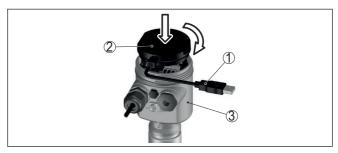


Fig. 26: Connection of the PC directly to the sensor via the interface adapter

- 1 USB cable to the PC
- 2 Interface adapter VEGACONNECT
- 3 Sensor

To the Modbus electronics

Connection of the PC to the Modbus electronics is carried out via a USB cable.

Scope of the parameter adjustment:

- Sensor electronics
- Modbus electronics

Fig. 27: Connecting the PC via USB to the Modbus electronics

1 USB cable to the PC

To the RS 485 cable

Connection of the PC to the RS 485 cable is carried out via a standard interface adapter RS 485/USB.

Scope of the parameter adjustment:

- Sensor electronics
- Modbus electronics

•

Information:

For parameter adjustment, it is absolutely necessary to disconnect from the RTU.

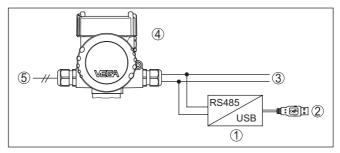


Fig. 28: Connection of the PC via the interface adapter to the RS 485 cable

- 1 Interface adapter RS 485/USB
- 2 USB cable to the PC
- 3 RS 485 cable
- 4 Sensor
- 5 Voltage supply

7.2 Parameterization

Prerequisites

For parameter adjustment of the instrument via a Windows PC, the configuration software PACTware and a suitable instrument driver (DTM) according to FDT standard are required. The latest PACTware version as well as all available DTMs are compiled in a DTM Collection. The DTMs can also be integrated into other frame applications according to FDT standard.

Note:

To ensure that all instrument functions are supported, you should always use the latest DTM Collection. Furthermore, not all described functions are included in older firmware versions. You can download the latest instrument software from our homepage. A description of the update procedure is also available in the Internet.

Further setup steps are described in the operating instructions manual " *DTM Collection/PACTware*" attached to each DTM Collection and which can also be downloaded from the Internet. Detailed descriptions are available in the online help of PACTware and the DTMs.

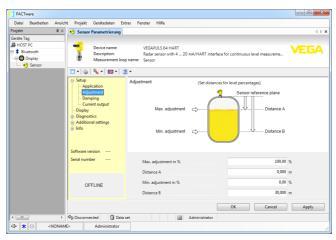


Fig. 29: Example of a DTM view

Standard/Full version

All device DTMs are available as a free-of-charge standard version and as a full version that must be purchased. In the standard version, all functions for complete setup are already included. An assistant for simple project configuration simplifies the adjustment considerably. Saving/printing the project as well as import/export functions are also part of the standard version.

In the full version there is also an extended print function for complete project documentation as well as a save function for measured value and echo curves. In addition, there is a tank calculation program as well as a multiviewer for display and analysis of the saved measured value and echo curves.

The standard version is available as a download under www.vega.com/downloads and "Software". The full version is available on CD from the agency serving you.

7.3 Set instrument address

The VEGABAR 83 requires an address for participating as a sensor in the Modbus communication. The addess setting is carried out via a PC with PACTware/DTM or Modbus RTU.

The default settings for the address are:

Modbus: 246Levelmaster: 31

Note:

The setting of the instrument address can only be carried out online.

Via PC through Modbus electronics

Start the project assistant and wait until the project tree has been set up. Then, in the project tree, go to the symbol for the Modbus gateway. Select with the right mouse key "Parameter", then "Online parameter adjustment" and start the DTM for the Modbus electronics.

In the menu bar of the DTM, go to the list arrow next to the symbol for "Screwdriver". Select the menu item "Change address in the instrument" and set the requested address.

Via PC through RS 485 cable

In the device catalogue, select the option " *Modbus Serial*" under " *Driver*". Double click on this driver and integrate it into the project tree.

Open the device manager on your PC and find out which COM interface the USB/RS 485 adapter is located on. Then go to the symbol " *Modbus COM.*" in the project tree. Select " *Parameter*" with the right mouse key and start the DTM for the USB/RS 485 adapter. Enter the COM interface no. from the device manager under " *Basic settings*".

Select with the right mouse key " Additional functions" and " Instrument search". The DTM then searches for the connected Modbus participants and integrates them into the project tree. Now, in the project tree, go to the symbol for the Modbus gateway. Select with the right mouse key " Parameter", then " Online parameter setting" and start the DTM for the Modbus electronics.

In the menu bar of the DTM, go to the list arrow next to the symbol for "Screwdriver". Select the menu item "Change address in the instrument" and set the requested address.

Then move again to the symbol " *Modbus COM*." in the project tree. Select with the right mouse key " *Additional functions*" and " *Change DTM addresses*". Enter here the modified address of the Modbus gateway.

Via Modbus-RTU

The instrument address is set in register no. 200 of the Holding Register (see chapter " *Modbus register* " in this operating instructions manual).

The procedure depends on the respective Modbus-RTU and the configuration tool.

7.4 Save parameter adjustment data

We recommend documenting or saving the parameterisation data via PACTware. That way the data are available for multiple use or service purposes.

8 Diagnosis, asset management and service

8.1 Maintenance

Maintenance

If the device is used properly, no special maintenance is required in normal operation.

Precaution measures against buildup

In some applications, product buildup on the diaphragm can influence the measuring result. Depending on the sensor and application, take precautions to ensure that heavy buildup, and especially a hardening thereof, is avoided.

Cleaning

The cleaning helps that the type label and markings on the instrument are visible.

Take note of the following:

- Use only cleaning agents which do not corrode the housings, type label and seals
- Use only cleaning methods corresponding to the housing protection rating

8.2 Diagnosis memory

The instrument has several memories available for diagnostic purposes. The data remain there even in case of voltage interruption.

Measured value memory

Up to 100,000 measured values can be stored in the sensor in a ring memory. Each entry contains date/time as well as the respective measured value.

Depending on the instrument version, values that can be stored are for example:

- Level
- Process pressure
- Differential pressure
- Static pressure
- Percentage value
- Scaled values
- Current output
- Lin. percent
- Measuring cell temperature
- Electronics temperature

When the instrument is shipped, the measured value memory is active and stores pressure value and measuring cell temperature every 10 s, with electronic differential pressure also the static pressure.

The requested values and recording conditions are set via a PC with PACTware/DTM or the control system with EDD. Data are thus read out and also reset.

Event memory

Up to 500 events are automatically stored with a time stamp in the sensor (non-deletable). Each entry contains date/time, event type, event description and value.

Event types are for example:

- Modification of a parameter
- Switch-on and switch-off times
- Status messages (according to NE 107)
- Error messages (according to NE 107)

The data are read out via a PC with PACTware/DTM or the control system with EDD.

8.3 Asset Management function

The instrument features self-monitoring and diagnostics according to NE 107 and VDI/VDE 2650. In addition to the status messages in the following tables there are more detailed error messages available under the menu item " *Diagnostics*" via the respective adjustment module.

Status messages

The status messages are divided into the following categories:

- Failure
- Function check
- Out of specification
- Maintenance required

and explained by pictographs:

Fig. 30: Pictographs of the status messages

- 1 Failure red
- 2 Out of specification yellow
- 3 Function check orange
- 4 Maintenance required blue

Malfunction (Failure):

Due to a malfunction in the instrument, a fault signal is output.

This status message is always active. It cannot be deactivated by the user.

Function check:

The instrument is being worked on, the measured value is temporarily invalid (for example during simulation).

This status message is inactive by default.

Out of specification:

The measured value is unreliable because an instrument specification was exceeded (e.g. electronics temperature).

This status message is inactive by default.

Maintenance required:

Due to external influences, the instrument function is limited. The measurement is affected, but the measured value is still valid. Plan in

maintenance for the instrument because a failure is expected in the near future (e.g. due to buildup).

This status message is inactive by default.

Failure

Code	Cause	Rectification
Text message		
F013	Gauge pressure or low pressure	Exchange measuring cell
No valid measured value available	Measuring cell defective	Send instrument for repair
F017	Adjustment not within specification	Change the adjustment according to
Adjustment span too small		the limit values
F025	Index markers are not continuously ris-	Check linearization table
Error in the linearization table	ing, for example illogical value pairs	Delete table/Create new
F036	Failed or interrupted software update	Repeat software update
no operable sensor software		Check electronics version
		Exchanging the electronics
		Send instrument for repair
F040	Hardware defect	Exchanging the electronics
Error in the electronics		Send instrument for repair
F041	No connection to the sensor electronics	Check connection between sensor and
Communication error		main electronics (with separate version)
F080	General software error	Disconnect operating voltage briefly
General software error		
F105	The instrument is still in the switch-on	Wait for the end of the switch-on phase
Measured value is deter- mined	phase, the measured value could not yet be determined	
F113	Error in the internal instrument commu-	Disconnect operating voltage briefly
Communication error	nication	Send instrument for repair
F260	Error in the calibration carried out in the	Exchanging the electronics
Error in the calibration	factory	Send instrument for repair
	Error in the EEPROM	
F261	Error during setup	Repeat setup
Error in the instrument set- tings	Error when carrying out a reset	Repeat reset
F264	Inconsistent settings (e.g.: distance, ad-	Modify settings
Installation/Setup error	justment units with application process pressure) for selected application	Modify connected sensor configuration or application
	Invalid sensor configuration (e.g.: ap- plication electronic differential pressure with connected differential pressure measuring cell)	
F265	Sensor no longer carries out a meas-	Carry out a reset
Measurement function disturbed	urement	Disconnect operating voltage briefly

Function check

Code	Cause	Rectification
Text message		
C700	A simulation is active	Finish simulation
Simulation active		Wait for the automatic end after 60 mins.

Out of specification

Code	Cause	Rectification
Text message		
S600	Temperature of the electronics in the non-	Check ambient temperature
Impermissible electronics	specified range	Insulate electronics
temperature		Use instrument with higher temperature range
S603	Operating voltage below specified range	Check electrical connection
Impermissible operating voltage		If necessary, increase operating voltage
S605	Measured process pressure below or	Check nominal measuring range of the in-
Impermissible pressure	above the adjustment range	strument
value		If necessary, use an instrument with a higher measuring range

Tab. 10: Error codes and text messages, information on causes as well as corrective measures

Maintenance

Code Text message	Cause	Rectification	DevSpec State in CMD 48
M500 Error in the delivery status	The data could not be restored during the reset to delivery status	Repeat reset Load XML file with sensor data into the sensor	Bit 0 of Byte 14 24
M501 Error in the non-active linearisation table	Index markers are not continuously rising, for example illogical value pairs	Check linearization table Delete table/Create new	Bit 1 of Byte 14 24
M502 Error in the event memory	Hardware error EEPROM	Exchanging the electronics Send instrument for repair	Bit 2 of Byte 14 24
M504 Error at a device interface	Hardware defect	Exchanging the electronics Send instrument for repair	Bit 3 of Byte 14 24
M507 Error in the instrument settings	Error during setup Error when carrying out a reset	Carry out reset and repeat setup	Bit 4 of Byte 14 24

8.4 Rectify faults

Reaction when malfunction occurs

The operator of the system is responsible for taking suitable measures to rectify faults.

Fault rectification

The first measures are:

- Evaluation of fault messages
- · Checking the output signal
- Treatment of measurement errors

A smartphone/tablet with the adjustment app or a PC/notebook with the software PACTware and the suitable DTM offer you further comprehensive diagnostic possibilities. In many cases, the causes can be determined in this way and the faults eliminated.

Reaction after fault rectification

Depending on the reason for the fault and the measures taken, the steps described in chapter " *Setup*" must be carried out again or must be checked for plausibility and completeness.

24 hour service hotline

Should these measures not be successful, please call in urgent cases the VEGA service hotline under the phone no. **+49 1805 858550**.

The hotline is also available outside normal working hours, seven days a week around the clock.

Since we offer this service worldwide, the support is provided in English. The service itself is free of charge, the only costs involved are the normal call charges.

8.5 Exchange process module on version IP68 (25 bar)

On version IP68 (25 bar), the user can exchange the process module on site. Connection cable and external housing can be kept.

Required tools:

Hexagon key wrench, size 2

Caution:

The exchange may only be carried out in the complete absence of line voltage.

In Ex applications, only a replacement part with appropriate Ex approval may be used.

Caution:

During exchange, protect the inner side of the parts against contamination and moisture.

Proceed as follows when carrying out the exchange:

- 1. Losen the fixing screw with the hexagon key wrench
- 2. Carefully detach the cable assembly from the process module

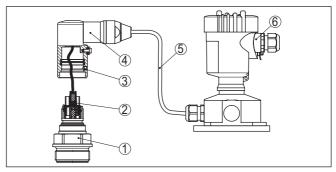


Fig. 31: VEGABAR 83 in IP68 version, 25 bar and lateral cable outlet, external housing

- 1 Process module
- 2 Plug connector
- 3 Fixing screw
- 4 Cable assembly
- 5 Connection cable
- 6 External housing
- 3. Loosen the plug connector
- 4. Mount the new process module on the measuring point
- 5. Plug the connector back in
- Mount the cable assembly on the process module and turn it to the desired position
- 7. Tighten the fixing screw with the hexagon key wrench

The exchange is finished.

8.6 Exchanging the electronics module

In case of a defect, the user can replace the electronics module with another one of identical type.

In Ex applications, only instruments and electronics modules with appropriate Ex approval may be used.

You can find detailed information you need to carry out an electronics exchange in the handbook of the electronics module.

8.7 Software update

The following components are required to update the instrument software:

- Instrument
- Voltage supply
- Interface adapter VEGACONNECT
- PC with PACTware
- Current instrument software as file

You can find the current instrument software as well as detailed information on the procedure in the download area of our homepage: www.vega.com.

You can find information about the installation in the download file.

Caution:

Instruments with approvals can be bound to certain software versions. Therefore make sure that the approval is still effective after a software update is carried out.

You can find detailed information in the download area at www.vega.com.

8.8 How to proceed if a repair is necessary

You can find an instrument return form as well as detailed information about the procedure in the download area of our homepage. By doing this you help us carry out the repair quickly and without having to call back for needed information.

Proceed as follows in case of repair:

- Print and fill out one form per instrument
- Clean the instrument and pack it damage-proof
- Attach the completed form and, if need be, also a safety data sheet outside on the packaging
- Ask the agency serving you to get the address for the return shipment. You can find the agency on our homepage.

9 Dismount

9.1 Dismounting steps

To remove the device, carry out the steps in chapters " *Mounting*" and " *Connecting to power suplly*" in reverse.

Warning:

When dismounting, pay attention to the process conditions in vessels or pipelines. There is a risk of injury, e.g. due to high pressures or temperatures as well as aggressive or toxic media. Avoid this by taking appropriate protective measures.

9.2 Disposal

Pass the instrument on to a specialised recycling company and do not use the municipal collecting points.

Remove any batteries in advance, if they can be removed from the device, and dispose of them separately.

If personal data is stored on the old device to be disposed of, delete it before disposal.

If you have no way to dispose of the old instrument properly, please contact us concerning return and disposal.

10 Supplement

10.1 Technical data

Note for approved instruments

The technical data in the respective safety instructions which are included in delivery are valid for approved instruments (e.g. with Ex approval). These data can differ from the data listed herein, for example regarding the process conditions or the voltage supply.

All approval documents can be downloaded from our homepage.

Materials and weights

Materials, wetted (piezoresistive/strain gauge measuring cell)

Process fitting 316L, Alloy C276 (2.4819)

Diaphragm

- Front-flush 316L, Alloy C276 (2.4819) 4)

- Set back (measuring ranges up to and 316L

including 40 bar, from 1600 bar)

Set back (measuring ranges from Elgiloy (2.4711)

100 bar up to and including 1000 bar)

Seal ring, O-ring FKM (VP2/A), EPDM (A+P 70.10-02), FFKM (Perlast

G74S), FEPM (Fluoraz SD890)

Seal for process fitting (in the scope of delivery)

- Thread G½ (EN 837), G1½ Aramid/NBR

(DIN 3852-A)

Materials, wetted (ceramic/metallic measuring cell)

Process fitting 316L

Diaphragm Alloy C276 (2.4819), gold-coated 20 μ, gold/rhodium-

coated 5 $\mu/1$ μ^{5}

Seal for process fitting (in the scope of delivery)

Thread G1½ (DIN 3852-A)
 Thread M44 x 1.25 (DIN 13)
 Klingersil C-4400
 FKM. FFKM. EPDM

Surface quality, hygienic process fittings, R_o < 0.8 μm

typ.

Materials, non-wetted parts

Isolating liquid ceramic/metallic measur- KN 92 medical white oil (FDA conform)

ing cell

Internal isolating liquid piezoresistive Synthetic oil KN 77, Neobee M 20 KN 59 (FDA conform),

measuring cell Halocarbon oil 6.3 KN 21 ^{6) 7)}

⁴⁾ Alloy C276 (2.4819) with process fitting of Alloy C276 (2.4819)

⁵⁾ Not on instruments with SIL qualification.

⁶⁾ Isolating liquid with measuring ranges up to 40 bar. With measuring ranges from 100 bar dry measuring cell.

Halocarbon oil: Generally in oxygen applications, not with vacuum measuring ranges, not with absolute measuring ranges < 1 bar_{abs}.

Housing

Housing
 Plastic PBT (Polyester), Aluminium AlSi10Mg (powder-

coated, basis: Polyester), 316L

Cable gland
 PA, stainless steel, brass

Cable gland: Seal, closure
 NBR, PA

- Seal, housing lid Silicone SI 850 R, NBR silicone-free

- Inspection window housing cover Polycarbonate (UL-746-C listed), glass 8)

- Ground terminal 316L

External housing - deviating materials

Housing and socket
 Plastic PBT (Polyester), 316L

Socket seal
 Seal below wall mounting plate ⁹⁾
 EPDM

Inspection window housing cover
 Polycarbonate (UL-746-C listed)

Ground terminal 316Ti/316L

Connection cable with IP68 (25 bar) version 10)

Cable cover
 Type label support on cable
 Connection cable with IP68 (1 bar) ver
PE, PUR
PE, PUR

sion 11)

Weights

Total weight VEGABAR 83 approx. 0.8 ... 8 kg (1.764 ... 17.64 lbs), depending on

process fitting and housing

Torques

Max. torque, metric proces	s fittings
----------------------------	------------

- G1⁄4, G1⁄2	50 Nm (36.88 lbf ft)
- G½ front-flush, G1 front-flush	40 Nm (29.50 lbf ft)
 G1½ front-flush (piezoresistive measuring cell) 	40 Nm (29.50 lbf ft)
- G11/2 front-flush (ceramic/metallic	200 Nm (147.5 lbf ft)

measuring cell)

Max. torque, non-metric process fittings

- ½ NPT, inside ¼ NPT	50 Nm (36.88 lbf ft)
≤ 40 bar/500 psig	

- ½ NPT, inside ¼ NPT 200 Nm (147.5 lbf ft) > 40 bar/500 psig

- 7/16 NPT for tube 1/4" 40 Nm (29.50 lbf ft) - 9/16 NPT for tube 3/8" 50 Nm (36.88 lbf ft)

⁸⁾ Glass with Aluminium and stainless steel precision casting housing

⁹⁾ Only for 316L with 3A approval

¹⁰⁾ Between transmitter and external electronics housing.

¹¹⁾ Fix connected to the sensor.

Max. torque for NPT cable glands and Conduit tubes

Plastic housing
 Aluminium/Stainless steel housing
 Mm (7.376 lbf ft)
 Mm (7.376 lbf ft)
 Mm (36.88 lbf ft)

Input variable - Piezoresistive/Strain gauge measuring cell

The specifications are only an overview and refer to the measuring cell. Limitations due to the material and version of the process fitting as well as the selected pressure type are possible. The specifications on the nameplate apply. ¹²⁾

Nominal measuring ranges and overload capability in bar/kPa

Nominal range	Overlo	Overload capability			
	Maximum pressure	Minimum pressure			
Gauge pressure					
0 +0.4 bar/0 +40 kPa	+1.2 bar/+120 kPa	-1 bar/-100 kPa			
0 +1 bar/0 +100 kPa	+3 bar/+300 kPa	-1 bar/-100 kPa			
0 +2.5 bar/0 +250 kPa	+7.5 bar/+750 kPa	-1 bar/-100 kPa			
0 +10 bar/0 +1000 kPa	+30 bar/+3000 kPa	-1 bar/-100 kPa			
0 +25 bar/0 +2500 kPa	+75 bar/+7500 kPa	-1 bar/-100 kPa			
0 +40 bar/0 +4000 kPa	+120 bar/+12 MPa	-1 bar/-100 kPa			
0 +100 bar/0 +10 MPa	+200 bar/+20 MPa	-1 bar/-100 kPa			
0 +250 bar/0 +25 MPa	+500 bar/+50 MPa	-1 bar/-100 kPa			
0 +600 bar/0 +60 MPa	+1200 bar/+120 MPa	-1 bar/-100 kPa			
0 +1000 bar/0 +100 MPa	+1500 bar/+150 MPa	-1 bar/-100 kPa			
-1 0 bar/-100 0 kPa	+3 bar/+300 kPa	-1 bar/-100 kPa			
-1 +1.5 bar/-100 +150 kPa	+7.5 bar/+750 kPa	-1 bar/-100 kPa			
-1 +10 bar/-100 +1000 kPa	+30 bar/+3000 kPa	-1 bar/-100 kPa			
-1 +25 bar/-100 +2500 kPa	+75 bar/+7500 kPa	-1 bar/-100 kPa			
-1 +40 bar/-100 +4000 kPa	+120 bar/+12 MPa	-1 bar/-100 kPa			
-0.2 +0.2 bar/-20 +20 kPa	+1.2 bar/+120 kPa	-1 bar/-100 kPa			
-0.5 +0.5 bar/-50 +50 kPa	+3 bar/+300 kPa	-1 bar/-100 kPa			
Absolute pressure	·				
0 1 bar/0 100 kPa	3 bar/300 kPa	0 bar abs.			
0 2.5 bar/0 250 kPa	7.5 bar/750 kPa	0 bar abs.			
0 10 bar/0 1000 kPa	30 bar/3000 kPa	0 bar abs.			
0 25 bar/0 2500 kPa	75 bar/+7500 kPa	0 bar abs.			
0 40 bar/0 4000 kPa	120 bar/+12 MPa	0 bar abs.			

¹²⁾ Data on overload capability apply for reference temperature.

Nominal measuring ranges and overload capacity in psi

Nominal range	Overload capability			
	Maximum pressure	Minimum pressure		
Gauge pressure	·			
0 +5 psig	+15 psig	-14.5 psig		
0 +15 psig	+45 psig	-14.5 psig		
0 +30 psig	+90 psig	-14.5 psig		
0 +150 psig	+450 psig	-14.5 psig		
0 +300 psig	+900 psig	-14.5 psig		
0 +500 psig	+1500 psig	-14.5 psig		
0 +1450 psig	+3000 psig	-14.5 psig		
0 +3000 psig	+6000 psig	-14.5 psig		
0 +9000 psig	+18000 psig	-14.5 psig		
0 +15000 psig	+22500 psig	-14.5 psig		
-14.5 0 psig	+45 psig	-14.5 psig		
-14.5 +20 psig	+90 psig	-14.5 psig		
-14.5 +150 psig	+450 psig	-14.5 psig		
-14.5 +300 psig	+900 psig	-14.5 psig		
-14.5 +600 psig	+1200 psig	-14.5 psig		
-3 +3 psig	+15 psig	-14.5 psig		
-7 +7 psig	+45 psig	-14.5 psig		
Absolute pressure				
0 15 psi	45 psi	0 psi		
0 30 psi	90 psi 0 psi			
0 150 psi	450 psi	0 psi		
0 300 psi	600 psi	0 psi		
0 500 psig	1500 psi	0 psi		

Input variable - Ceramic/metallic measuring cell

The specifications are only an overview and refer to the measuring cell. Limitations due to the material and version of the process fitting are possible. The specifications on the nameplate apply. ¹³⁾

Nominal measuring ranges and overload capability in bar/kPa

Nominal range	Overload capability		
	Maximum pressure Minimum pressure		
Gauge pressure			
0 +0.1 bar/0 +10 kPa	+15 bar/+1500 kPa	-1 bar/-100 kPa	
0 +0.4 bar/0 +40 kPa	+30 bar/+3000 kPa	-1 bar/-100 kPa	

¹³⁾ Data on overload capability apply for reference temperature.

Nominal range	Overload capability		
	Maximum pressure	Minimum pressure	
0 +1 bar/0 +100 kPa	+35 bar/+3500 kPa	-1 bar/-100 kPa	
0 +2.5 bar/0 +250 kPa	+50 bar/+5000 kPa	-1 bar/-100 kPa	
0 +5 bar/0 +500 kPa	+50 bar/+5000 kPa	-1 bar/-100 kPa	
0 +10 bar/0 +1000 kPa	+50 bar/+5000 kPa	-1 bar/-100 kPa	
0 +25 bar/0 +2500 kPa	+50 bar/+5000 kPa	-1 bar/-100 kPa	
-1 0 bar/-100 0 kPa	+35 bar/+3500 kPa	-1 bar/-100 kPa	
-1 +1.5 bar/-100 +150 kPa	+50 bar/+5000 kPa	-1 bar/-100 kPa	
-1 +5 bar/-100 +500 kPa	+50 bar/+6500 kPa	-1 bar/-100 kPa	
-1 +10 bar/-100 +1000 kPa	+50 bar/+5000 kPa	-1 bar/-100 kPa	
-1 +25 bar/-100 +2500 kPa	+50 bar/+5000 kPa	-1 bar/-100 kPa	
-0.05 +0.05 bar/-5 +5 kPa	+10 bar/+1000 kPa	-1 bar/-100 kPa	
-0.2 +0.2 bar/-20 +20 kPa	+20 bar/+2000 kPa	-1 bar/-100 kPa	
-0.5 +0.5 bar/-50 +50 kPa	+35 bar/+3500 kPa	-1 bar/-100 kPa	
Absolute pressure			
0 1 bar/0 100 kPa	35 bar/3500 kPa	0 bar abs.	
0 2.5 bar/0 250 kPa	50 bar/5000 kPa	0 bar abs.	
0 10 bar/0 1000 kPa	50 bar/5000 kPa	0 bar abs.	
0 25 bar/0 2500 kPa	50 bar/5000 kPa	0 bar abs.	

Nominal measuring ranges and overload capacity in psi

Nominal range	Overlo	ad capability
	Maximum pressure	Minimum pressure
Gauge pressure	·	
0 +1.5 psig	+225 psig	-14.5 psig
0 +5 psig	+375 psig	-14.5 psig
0 +15 psig	+525 psig	-14.5 psig
0 +30 psig	+720 psig	-14.5 psig
0 +75 psig	+720 psig	-14.5 psig
0 +150 psig	+720 psig	-14.5 psig
0 +300 psig	+720 psig	-14.5 psig
-14.5 0 psig	+510 psig	-14.5 psig
-14.5 +20 psig	+720 psig	-14.5 psig
-14.5 +75 psig	+975 psig	-14.51 psig
-14.5 +150 psig	+725 psig	-14.5 psig
-14.5 +300 psig	+725 psig	-14.5 psig
-0.7 +0.7 psig	+225 psi	-14.5 psig

Nominal range	Overlo	oad capability
	Maximum pressure	Minimum pressure
-3 +3 psig	+190 psi	-14.5 psig
-7 +7 psig	+525 psig	-14.5 psig
Absolute pressure		
0 15 psi	525 psi	0 psi
0 30 psi	+720 psig	0 psi
0 150 psi	+720 psig	0 psi
0 300 psi	+720 psig	0 psi

Adjustment ranges

Specifications refer to the nominal measuring range, pressure values lower than -1 bar cannot be set

Min./Max. adjustment:

Percentage value-10 ... 110 %Pressure value-20 ... 120 %

Zero/Span adjustment:

ZeroSpan-20 ... +95 %-120 ... +120 %

Difference between zero and span max. 120 % of the nominal range
 Max. permissible Turn Down Unlimited (recommended 20:1)

Switch-on phase

Run-up time approx. 23 s

Output variable

Output

Physical layer
 Bus specifications
 Digital output signal according to standard EIA-485
 Modbus Application Protocol V1.1b3, Modbus over se-

rial line V1.02

Data protocols
 Modbus RTU, Modbus ASCII, Levelmaster

Max. transmission rate 57.6 Kbit/s

Dynamic behaviour output

Dynamic characteristics depending on medium and temperature

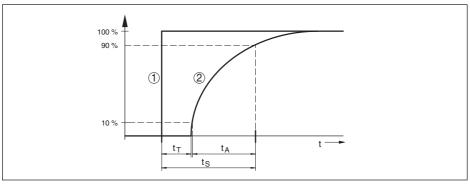


Fig. 32: Behaviour in case of sudden change of the process variable. t_{τ} dead time; t_{χ} : rise time; t_{S} : jump response time

- 1 Process variable
- 2 Output signal

	VEGABAR 83	VEGABAR 83, IP68 (25 bar), connection cable > 25 m (82.01 ft)
Dead time	≤ 25 ms	≤ 50 ms
Rise time (10 90 %)	≤ 55 ms	≤ 150 ms
Step response time (ti: 0 s, 10 90 %)	≤ 80 ms	≤ 200 ms

Damping (63 % of the input variable)

0 ... 999 s, adjustable via menu item " Damping"

Reference conditions and influencing variables (according to DIN EN 60770-1)

Reference conditions according to DIN EN 61298-1

- Temperature +18 ... +30 °C (+64 ... +86 °F)

- Relative humidity 45 ... 75 %

- Air pressure 860 ... 1060 mbar/86 ... 106 kPa (12.5 ... 15.4 psi)

Determination of characteristics Limit point adjustment according to IEC 61298-2

Characteristic curve Linear

Reference installation position upright, diaphragm points downward

Influence of the installation position

- Ceramic/metallic measuring cell

- Piezoresistive/strain gauge measur- depending on the process fitting and the chemical seal

ing cell

ig ceii

depending on the process litting and the chemical sea

Deviation in the current output due to strong, high-frequency electromagnetic

 $< \pm 150 \,\mu A$

< 5 mbar/0.5 kPa (0.07 psig)

strong, high-frequency electronic fields acc. to EN 61326-1

Deviation (according to IEC 60770-1)

Specifications refer to the set span. Turn down (TD) is the ratio: nominal measuring range/set span.

Accuracy class	Non-linearity, hysteresis and repeatability with TD 1 : 1 up to 5 : 1	Non-linearity, hysteresis and repeatability with 5 : 1
0.075 %	< 0.075 %	< 0.015 % x TD
0.1 %	< 0.1 %	< 0.02 % x TD
0.2 %	< 0.2 %	< 0.04 % x TD

Influence of the product temperature

Thermal change zero signal and output span

Turn down (TD) is the relation nominal measuring range/adjusted span.

The thermal change of the zero signal and output span corresponds to the value F_T in chapter " Calculation of the total deviation (according to DIN 16086)".

Piezoresistive/strain gauge measuring cell

The basic temperature error in % from the above graphic can increase due to the additional factors such as temperature range (factor FMZ) and Turn Down (factor FTD). The additional factors are listed in the following tables.

Additional factor through accuracy class

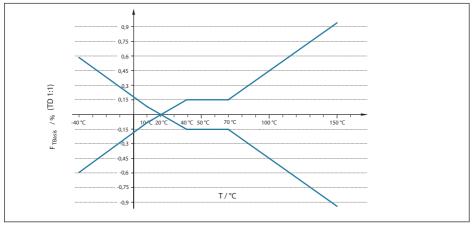


Fig. 33: Basic temperature error F_{TBasis} at TD 1 : 1

The basic temperature error in % from the above graphic can increase due to the additional factors such as accuracy class (factor FMZ) and Turn Down (factor FTD). The additional factors are listed in the following tables.

Additional factor through accuracy class

Accuracy class	0.075 %, 0.1 %	0.2 %
Factor FMZ	1	3

Additional factor through Turn Down

The additional factor FTD through Turn down is calculated according to the following formula:

$$F_{TD} = 0.5 \times TD + 0.5$$

In the table, example values for typical Turn downs are listed.

Turn Down	TD 1:1	TD 2.5 : 1	TD 5:1	TD 10:1	TD 20 : 1
Factor FTD	1	1.75	3	5.5	10.5

Ceramic/Metal measuring cell - Standard

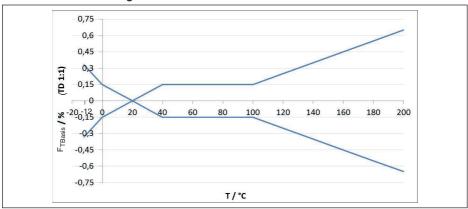


Fig. 34: Basic temperature error F_{TBasis} at TD 1:1

The basic temperature error in % from the above graphic can increase due to the additional factors, depending on the measuring cell version (factor FMZ) and the Turn Down (factor FTD). The additional factors are listed in the following tables.

Additional factor through measuring cell version

Measuring cell version	•			climate-compensa n measuring rang	, , ,
	0.075 %, 0.1 %	0.2 %	10 bar, 25 bar	1 bar, 2.5 bar	0.4 bar
Factor FMZ	1	3	1	2	3

Additional factor through Turn Down

The additional factor FTD through Turn down is calculated according to the following formula:

$$F_{TD} = 0.5 \times TD + 0.5$$

In the table, example values for typical Turn downs are listed.

Turn Down	TD 1:1	TD 2.5 : 1	TD 5:1	TD 10:1	TD 20:1
Factor FTD	1	1.75	3	5.5	10.5

Long-term stability (according to DIN 16086)

Applies to the respective **digital** signal output (e.g. HART, Profibus PA) as well as to **analogue** current output 4 ... 20 mA under reference conditions. Specifications refer to the set span. Turn down (TD) is the ratio nominal measuring range/set span. ¹⁴⁾

Long-term staibility - Ceramic/metallic measuring cell

Time period	
One year	< 0.05 % x TD
Five years	< 0.1 % x TD
Ten years	< 0.2 % x TD

Long-term stability - Piezoresistive/Strain gauge measuring cell

Version	
Measuring ranges > 1 bar	< 0.1 % x TD/year
Measuring ranges > 1 bar, isolating liquid, synthetic oil, diaphragm Elgiloy (2.4711)	< 0.15 % x TD/year
Measuring range 1 bar	< 0.15 % x TD/year
Measuring range 0.4 bar	< 0.35 % x TD/year

Ambient conditions

Version	Ambient temperature	Storage and transport temperature	
Standard version	-40 +80 °C (-40 +176 °F)	-60 +80 °C (-76 +176 °F)	
Version IP66/IP68 (1 bar)	-20 +80 °C (-4 +176 °F)	-20 +80 °C (-4 +176 °F)	
Version IP68 (25 bar), with connection cable PUR	-20 +80 °C (-4 +176 °F)	-20 +80 °C (-4 +176 °F)	
Version IP68 (25 bar), connection cable PE	-20 +60 °C (-4 +140 °F)	-20 +60 °C (-4 +140 °F)	

Process conditions - Piezoresistive/Strain gauge measuring cell

Process temperature

Seal	Sensor version					
	Standard	Extended tem- perature range	Hygieni	c fittings	Version for oxy- gen applications	
	p _{abs} ≥ 1 r	mbar	p _{abs} ≥ 1 mbar	p _{abs} ≥ 10 mbar	p _{abs} ≥ 10 mbar	
Without consideration of the seal 15)	-20/-40 +105 °C (-4/-40 +221 °F)	-	_	_	-20 +60 °C	
FKM (VP2/A)	-20 +105 °C	-20 +150 °C	-20 +85 °C	-20 +150 °C	(-4 +140 °F)	
EPDM (A+P 70.10-02)	(-4 +221 °F)	(-4 +302 °F)		(-4 +302 °F)		

¹⁴⁾ With ceramic/metallic measuring cell with gold-coated diaphragm, the values must be multiplied with factor 3.

¹⁵⁾ Process fittings acc. to DIN 3852-A, EN 837

Seal		Sensor version					
	Standard	Extended tem- perature range	Hygienic fittings		Version for oxy- gen applications		
	p _{abs} ≥ 1 mbar		p _{abs} ≥ 1 mbar	p _{abs} ≥ 10 mbar	p _{abs} ≥ 10 mbar		
FFKM (Perlast	-15 +105 °C	-15 +150 °C	-15 +85 °C	-15 +150 °C	-15 +60 °C		
G74S)	(+5 +221 °F)	(+5 +302 °F)	(+5 +185 °F)	(+5 +302 °F)	(+5 +140 °F)		
FEPM (Fluoraz	-5 +105 °C	-	-	-	-5 +60 °C		
SD890)	(+23 +221 °F)				(+23 +140 °F)		

Temperature derating

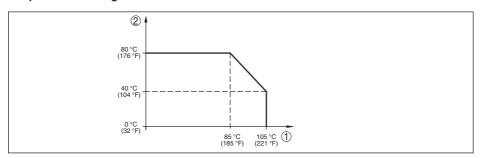


Fig. 35: Temperature derating VEGABAR 83, version up to +105 °C (+221 °F)

- 1 Process temperature
- 2 Ambient temperature

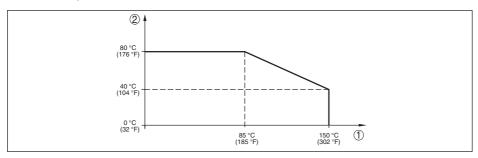


Fig. 36: Temperature derating VEGABAR 83, version up to +150 °C (+302 °F)

- 1 Process temperature
- 2 Ambient temperature

SIP process temperature (SIP = Sterilization in place)

Vapour stratification for 2 h ¹⁶⁾ +150 °C (+302 °F)

Process pressure

Permissible process pressure see specification " Process pressure" on the type label

Mechanical stress

¹⁶⁾ Instrument configuration suitable for vapour

	Without co	ooling zone	With cooling zone		
Version	All housing versions	Double cham- ber stainless steel housing	All housing ver- sions	Double cham- ber stainless steel housing	
Vibration resist- ance 1 to 4 g at 5 200 Hz accord- ing to EN 60068-2-6 (vibration with reso- nance)	4 g (GL characteristics 2)	0.7 g (GL characteristics 1)	4 g (GL characteristics 2)	0.7 g (GL characteristics 1)	
Shock resistance 2.3 ms according to EN 60068-2-27 (me- chanical shock)	50 g		50 g	20 g	

Process conditions - Ceramic/metallic measuring cell

Process temperature

Version	Temperature range				
	p _{abs} ≥ 50 mbar	p _{abs} ≥ 10 mbar	p _{abs} ≥ 1 mbar		
Standard	-12 +15	-12 +150 °C (+10 +284 °F)			
Extended temperature	-12 +180 °C (+10 +356 °F)	-12 +160 °C	-12 +120 °C (+10 +248 °F)		
range	-12 +200 °C (+10 +392 °F)	(+10 +320 °F)	(

Temperature derating

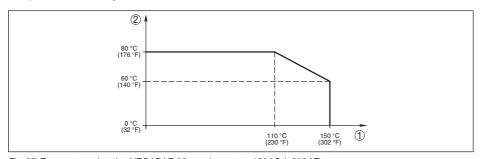


Fig. 37: Temperature derating VEGABAR 83, version up to +150 $^{\circ}$ C (+302 $^{\circ}$ F)

- 1 Process temperature
- 2 Ambient temperature

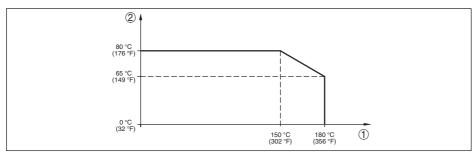


Fig. 38: Temperature derating VEGABAR 83, version up to +180 °C (+356 °F)

- 1 Process temperature
- 2 Ambient temperature

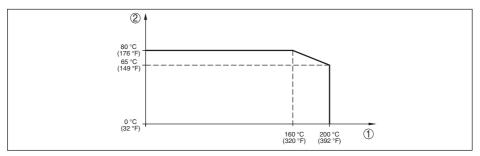


Fig. 39: Temperature derating VEGABAR 83, version up to +200 °C (+392 °F)

- 1 Process temperature
- 2 Ambient temperature

Process pressure

Permissible process pressure see specification "Process pressure" on the type label

Mechanical stress¹⁷⁾

Vibration resistance 1 to 4 g at 4 g

5 ... 200 Hz according to EN 60068-2-6

(vibration with resonance)

Shock resistance 50 g, 2.3 ms according to EN 60068-2-27 (mechanical

shock) 18)

Electromechanical data - version IP66/IP67 and IP66/IP68 (0.2 bar) 19)

Options of the cable entry

Cable entryM20 x 1.5; ½ NPT

Cable gland
 M20 x 1.5, ½ NPT (cable ø see below table)

Blind plug
 M20 x 1.5; ½ NPT

- Closing cap ½ NPT

- ¹⁷⁾ Depending on the instrument version.
- ¹⁸⁾ 2 g with housing version stainless steel double chamber
- ¹⁹⁾ IP66/IP68 (0.2 bar), only with absolute pressure.

Material cable gland/Seal insert	Cable diameter			
	5 9 mm	6 12 mm	7 12 mm	10 14 mm
PA/NBR	•	•	-	•
Brass, nickel-plated/NBR	•	•	-	-
Stainless steel/NBR	-	-	•	-

Wire cross-section (spring-loaded terminals)

Massive wire, stranded wire
 Stranded wire with end sleeve
 0.2 ... 2.5 mm² (AWG 24 ... 14)
 0.2 ... 1.5 mm² (AWG 24 ... 16)

Electromechanical data - version IP68 (25 bar)

Connection cable transmitter - external housing, mechanical data

- Configuration Wires, strain relief, breather capillaries, screen braiding,

metal foil, mantle 20)

 - Standard length
 5 m (16.40 ft)

 - Max. length
 180 m (590.5 ft)

 - Min. bending radius at 25 °C/77 °F
 25 mm (0.985 in)

- Diameter approx. 8 mm (0.315 in)

MaterialColourBlack, blue

Connection cable transmitter - external housing, electrical data – Wire cross-section 0.5 mm 2 (AWG 20) – Wire resistance 0.037 Ω /m (0.012 Ω /ft)

Interface to the external display and adjustment unit

Data transmission Digital (I²C-Bus)
Connection cable Four-wire

Sensor version	Configuration, connection cable			
	Cable length	Standard cable	Shielded	
4 20 mA/HART	50			
Modbus	50 m	•	_	
Profibus PA, Foundation Fieldbus	25 m	-	•	

Interface to the Secondary sensor

Data transmission Digital (I²C-Bus)

Configuration, connection cable 4-wire, shielded

Max. cable length 25 m

Integrated clock

Date format Day.Month.Year
Time format 12 h/24 h

²⁰⁾ Breather capillaries not with Ex-d version.

Time zone, factory setting CET

Max. rate deviation 10.5 min/year

Additional output parameter - Electronics temperature

Range -40 ... +85 °C (-40 ... +185 °F)

Resolution < 0.1 KDeviation $\pm 3 \text{ K}$

Availability of the temperature values

Indication
 Via the display and adjustment module

Output
 Via the respective output signal

Voltage supply

Operating voltage 8 ... 30 V DC

Max. power consumption 520 mW

Reverse voltage protection Integrated

Potential connections and electrical separating measures in the instrument

Electronics Not non-floating

Reference voltage ²¹⁾ 500 V AC

Conductive connection Between ground terminal and metallic process fitting

Electrical protective measures

Housing material	Version	Protection acc. to IEC 60529	Protection acc. to NEMA
Plastic		IP66/IP67	Type 4x
Aluminium	Double chamber		
Stainless steel, precision casting			
Stainless steel (transmitter, version with external housing)		IP68 (25 bar)	-

Connection of the feeding power supply Networks of overvoltage category III

unit

Altitude above sea level

by default up to 2000 m (6562 ft)
 with connected overvoltage protection up to 5000 m (16404 ft)

Pollution degree ²²⁾ 4
Protection rating (IEC 61010-1) II

10.2 Device communication Modbus

In the following, the necessary device-specific details are shown. You can find further information of Modbus on www.modbus.org.

²¹⁾ Galvanic separation between electronics and metal housing parts

²²⁾ When used with fulfilled housing protection.

Parameters for the bus communication

The VEGABAR 83 is preset with the following default values:

Parameter	Configurable Values	Default Value
Baud Rate	1200, 2400, 4800, 9600, 19200	9600
Start Bits	1	1
Data Bits	7, 8	8
Parity	None, Odd, Even	None
Stop Bits	1, 2	1
Address range Modbus	1 255	246

Start bits and data bits cannot be modified.

General configuration of the host

The data exchange with status and variables between field device and host is carried out via register. For this, a configuration in the host is required. Floating point numbers with short prevision (4 bytes) according to IEEE 754 are transmitted with individually selectable order of the data bytes (byte transmission order). This " Byte transmission order" is determined in the parameter " Format Code". Hence the RTU knows the registers of the VEGABAR 83 which must be contacted for the variables and status information.

Format Code	Byte transmission order
0	ABCD
1	CDAB
2	DCBA
3	BADC

10.3 Modbus register

Holding Register

The Holding registers consist of 16 bit. They can be read and written. Before each command, the address (1 byte), after each command, a CRC (2 byte) is sent.

Register Name	Register Number	Туре	Configurable Values	Default Value	Unit
Address	200	Word	1 255	246	_
Baud Rate	201	Word	1200, 2400, 4800, 9600, 19200, 38400, 57600	9600	_
Parity	202	Word	0 = None, 1 = Odd, 2 = Even	0	-
Stopbits	203	Word	1 = None, 2 = Two	1	-
Delay Time	206	Word	10 250	50	ms
Byte Oder (Floating point format)	3000	Word	0, 1, 2, 3	0	_

Input register

The input registers consist of 16 bits. They can only be read out. Before each command, the address (1 byte) is sent, after each command a CRC (2 bytes) is sent.

PV, SV, TV and QV can be adjusted via the sensor DTM.

Register Name	Register Number	Туре	Note	
Status	100	DWord	Bit 0: Invalid Measurement Value PV	
			Bit 1: Invalid Measurement Value SV	
			Bit 2: Invalid Measurement Value TV	
			Bit 3: Invalid Measurement Value QV	
PV Unit	104	DWord	Unit Code	
PV	106		Primary Variable in Byte Order CDAB	
SV Unit	108	DWord	Unit Code	
SV	110		Secondary Variable in Byte Order CDAB	
TV Unit	112	DWord	Unit Code	
TV	114		Third Variable in Byte Order CDAB	
QV Unit	116	DWord	Unit Code	
QV	118		Quarternary Variable in Byte Order CDAB	
Status	1300	DWord	See Register 100	
PV	1302		Primary Variable in Byte Order of Register 3000	
SV	1304		Secondary Variable in Byte Order of Register 3000	
TV	1306		Third Variable in Byte Order of Register 3000	
QV	1308		Quarternary Variable in Byte Order of Register 3000	
Status	1400	DWord	See Register 100	
PV	1402	DVVoid	Primary Variable in Byte Order CDAB	
Status	1412	DWord	See Register 100	
SV	1414	DVVoid	Secondary Variable in Byte Order CDAB	
Status	1424	DWord	See Register 100	
TV	1426	DVVoid		
Status	1436	DWord	Third Variable in Byte Order CDAB	
QV	1438	DVVoid	See Register 100	
QV	1436		Quarternary Variable in Byte Order CDAB	
Status	2000	DWord	See Register 100	
PV	2002	DWord	Primary Variable in Byte Order ABCD (Big Endian)	
SV	2004	DWord	Secondary Variable in Byte Order ABCD (Big Endian)	
TV	2006	DWord	Third Variable in Byte Order ABCD (Big Endian)	
QV	2008	DWord	Quarternary Variable in Byte Order ABCD (Big Endian)	

Register Name	Register Number	Туре	Note
Status	2100	DWord	See Register 100
PV	2102	DWord	Primary Variable in Byte Order DCBA (Little Endian)
SV	2104	DWord	Secondary Variable in Byte Order DCBA (Little Endian)
TV	2106	DWord	Third Variable in Byte Order ABCD DCBA (Little Endian)
QV	2108	DWord	Quarternary Variable in Byte Order DCBA (Little Endian)
Status	2200	DWord	See Register 100
PV	2202	DWord	Primary Variable in Byte Order BACD (Middle Endian)
SV	2204	DWord	Secondary Variable in Byte Order BACD (Middle Endian)
TV	2206	DWord	Third Variable in Byte Order BACD (Middle Endian)
QV	2208	DWord	Quarternary Variable in Byte Order BACD (Middle Endian)

Unit Codes for Register 104, 108, 112, 116

Unit Code	Measurement Unit
1	in H2O
2	in Hg
3	ft H2O
4	mm H2O
5	mm Hg
6	psi
7	bar
8	mbar
11	Pa
12	kPa
13	torr
32	°C
33	°F
40	US liq. gal.
41	L
42	Imp. Gal.
43	m3
44	ft
45	m
46	bbl
47	in
48	cm
49	mm
111	cyd

Unit Code	Measurement Unit	
112	cft	
113	cuin	
237	MPa	

10.4 Modbus RTU commands

FC3 Read Holding Register

With this command, any number (1-127) of holding registers is read out. The start register, from which the readout should start, and the number of registers are transmitted.

	Parameter	Length	Code/Data
Request:	Function Code	1 Byte	0x03
	Start Address	2 Bytes	0x0000 to 0xFFFF
	Number of Registers	2 Bytes	1 to 127 (0x7D)
Response:	Function Code	1 Byte	0x03
	Start Address	2 Bytes	2*N
	Register Value	N*2 Bytes	Data

FC4 Read Input Register

With this command, any number (1-127) of input registers is read out. The start register, from which the readout should start, and the number of registers are transmitted.

	Parameter	Length	Code/Data
Request:	Function Code	1 Byte	0x04
	Start Address	2 Bytes	0x0000 to 0xFFFF
	Number of Registers	N*2 Bytes	1 to 127 (0x7D)
Response:	Function Code	1 Byte	0x04
	Start Address	2 Bytes	2*N
	Register Value	N*2 Bytes	Data

FC6 Write Single Register

This function code is used to write to a single Holding Register.

	Parameter	Length	Code/Data
Request:	Function Code	1 Byte	0x06
	Start Address	2 Bytes	0x0000 to 0xFFFF
	Number of Registers	2 Bytes	Data
Response:	Function Code	1 Byte	0x04
	Start Address	2 Bytes	2*N
	Register Value	2 Bytes	Data

FC8 Diagnostics

With this function code different diagnostic functions are triggered or diagnostic values read out.

	Parameter	Length	Code/Data
Request:	Function Code	1 Byte	0x08
	Sub Function Code	2 Bytes	
	Data	N*2 Bytes	Data
Response:	Function Code	1 Byte	0x08
	Sub Function Code	2 Bytes	
	Data	N*2 Bytes	Data

Implemented function codes:

Sub Function Code	Name
0x00	Return Data Request
0x0B	Return Message Counter

With sub function codes 0x00 only one 16 bit value can be written.

FC16 Write Multiple Register

This function code is used to write to several Holding Registers. In a request, it can only be written to registers that are in direct succession.

	Parameter	Length	Code/Data
Request:	Function Code	1 Byte	0x10
	Start Address	2 Bytes	0x0000 to 0xFFFF
	Register Value	2 Bytes	0x0001 to 0x007B
	Byte Number	1 Byte	2*N
	Register Value	N*2 Bytes	Data
Response:	Function Code	1 Byte	0x10
	Sub Function Code	2 Bytes	0x0000 to 0xFFFF
	Data	2 Bytes	0x01 to 0x7B

FC17 Report Sensor ID

With this function code, the sensor ID on Modbus is queried.

	Parameter	Length	Code/Data
Request:	Function Code	1 Byte	0x11
Response:	Function Code	1 Byte	0x11
	Byte Number	1 Byte	
	Sensor ID	1 Byte	
	Run Indicator Status	1 Byte	

FC43 Sub 14, Read Device Identification

With this function code, the Device Identification is queried.

	Parameter	Length	Code/Data
Request:	Function Code	1 Byte	0x2B
	MEI Type	1 Byte	0x0E
	Read Device ID Code	1 Byte	0x01 to 0x04
	Object ID	1 Byte	0x00 to 0xFF
Response:	Function Code	1 Byte	0x2B
	MEI Type	1 Byte	0x0E
	Read Device ID Code	1 Byte	0x01 to 0x04
	Confirmity Level	1 Byte	0x01, 0x02, 0x03, 0x81, 0x82, 0x83
	More follows	1 Byte	00/FF
	Next Object ID	1 Byte	Object ID number
	Number of Objects	1 Byte	
	List of Object ID	1 Byte	
	List of Object length	1 Byte	
	List of Object value	1 Byte	Depending on the Object ID

10.5 Levelmaster commands

The VEGABAR 83 is also suitable for connection to the following RTUs with Levelmaster protocol. The Levelmaster protocol is often called " Siemens" " Tank protocol".

RTU	Protocol
ABB Totalflow	Levelmaster
Kimray DACC 2000/3000	Levelmaster
Thermo Electron Autopilot	Levelmaster

Parameters for the bus communication

The VEGABAR 83 is preset with the default values:

Parameter	Configurable Values	Default Value
Baud Rate	1200, 2400, 4800, 9600, 19200	9600
Start Bits	1	1
Data Bits	7, 8	8
Parity	None, Odd, Even	None
Stop Bits	1, 2	1
Address range Levelmaster	32	32

The Levelmaster commands are based on the following syntax:

- Capital letters are at the beginning of certain data fields
- Small letters stand for data fields

- All commands are terminated with " <cr>
 " (carriage return)
- All commands start with " *Uuu*", whereby " *uu*" stands for the address (00-31)
- " *" can be used as a joker for any position in the address. The sensor always converts this in
 its address. In case of more than one sensor, the joker must not be used, because otherwise
 several slaves will answer
- Commands that modify the instrument return the command with "OK". "EE-ERROR" replaces "OK" if there was a problem changing the configuration

Report Level (and Temperature)

	Parameter	Length	Code/Data
Request:	Report Level (and Temperature)	4 characters ASCII	Uuu?
Response:	Report Level (and Temperature)	24 characters ASCII	UuuDIII.IIFtttEeeeeWwww uu = Address III.II = PV in inches ttt = Temperature in Fahrenheit eeee = Error number (0 no error, 1 level data not readable) wwww = Warning number (0 no warning)

PV in inches will be repeated if " Set number of floats" is set to 2. Hence 2 measured values can be transmitted. PV value is transmitted as first measured value, SV as seconed measured value.

Information:

The max. value for the PV to be transmitted is 999.99 inches (corresponds to approx. 25.4 m).

If the temperature should be transmitted in the Levelmaster protocol, then TV must be set in the sensor to temperature.

PV, SV and TV can be adjusted via the sensor DTM.

Report Unit Number

	Parameter	Length	Code/Data
Request:	Report Unit Number	5 characters ASCII	U**N?
Response:	Report Level (and Temperature)	6 characters ASCII	UuuNnn

Assign Unit Number

	Parameter	Length	Code/Data
Request:	Assign Unit Number	6 characters ASCII	UuuNnn
Response:	Assign Unit Number	6 characters ASCII	UuuNOK
			uu = new Address

Set number of Floats

	Parameter	Length	Code/Data
Request:	Set number of Floats	5 characters ASCII	UuuFn
Response:	Set number of Floats	6 characters ASCII	UuuFOK

If the number is set to 0, no level is returned

Set Baud Rate

	Parameter	Length	Code/Data
Request:	Set Baud Rate	8 (12) characters ASCII	UuuBbbbb[b][pds]
			Bbbbb[b] = 1200, 9600 (default)
			pds = parity, data length, stop bit (optional)
			parity: none = 81, even = 71 (default), odd = 71
Response:	Set Baud Rate	11 characters ASCII	

Example: U01B9600E71

Change instrument on address 1 to baudrate 9600, parity even, 7 data bits, 1 stop bit

Set Receive to Transmit Delay

	Parameter	Length	Code/Data
Request:	Set Receive to Transmit Delay	7 characters ASCII	UuuRmmm mmm = milliseconds (50 up to 250), default = 127 ms
Response:	Set Receive to Transmit Delay	6 characters ASCII	UuuROK

Report Number of Floats

	Parameter	Length	Code/Data
Request:	Set Receive to Transmit Delay	4 characters ASCII	UuuF
Response:	Set Receive to Transmit Delay		UuuFn n = number of measurement values (0, 1 or 2)

Report Receive to Transmit Delay

	Parameter	Length	Code/Data
Request:	Report Receive to Transmit Delay	4 characters ASCII	UuuR
Response:	Report Receive to Transmit Delay	7 characters ASCII	UuuRmmm mmm = milliseconds (50 up to 250), default = 127 ms

Error codes

Error Code	Name
EE-Error Error While Storing Data in EEPROM	
FR-Error Erorr in Frame (too short, too long, wrong data	
LV-Error	Value out of limits

10.6 Configuration of typical Modbus hosts

Fisher ROC 809

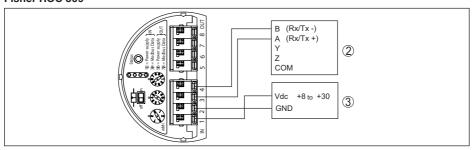


Fig. 40: Connection of VEGABAR 83 to RTU Fisher ROC 809

- 1 VEGABAR 83
- 2 RTU Fisher ROC 809
- 3 Voltage supply

Parameters for Modbus Hosts

Parameter	Value Fisher ROC 809	Value ABB Total Flow	Value Fisher Thermo Elec- tron Autopilot	Value Fisher Bristol Control- Wave Micro	Value Scada- Pack
Baud Rate	9600	9600	9600	9600	9600
Floating Point Format Code	0	0	0	2 (FC4)	0
RTU Data Type	Conversion Code 66	16 Bit Modicon	IEE Fit 2R	32-bit registers as 2 16-bit reg- isters	Floating Point
Input Register Base Number	0	1	0	1	30001

The basic number of the input registers is always added to the input register address of VEGABAR 83.

This results in the following constellations:

- Fisher ROC 809 Register address for 1300 is address 1300
- ABB Total Flow Register address for 1302 is address 1303
- Thermo Electron Autopilot Register address for 1300 is address 1300
- Bristol ControlWave Micro Register address for 1302 is address 1303
- ScadaPack Register address for 1302 is address 31303

10.7 Calculation of the total deviation

The total deviation of a pressure transmitter indicates the maximum measurement error to be expected in practice. It is also called maximum practical deviation or operational error.

According to DIN 16086, the total deviation F_{total} is the sum of the basic deviation F_{net} and the longterm stability F_{stab}:

$$F_{total} = F_{perf} + F_{stab}$$

The basic deviation \mathbf{F}_{perf} in turn consists of the thermal change of the zero signal and the output span F_{τ} (temperature error) as well as the deviation F_{ν} :

$$F_{perf} = \sqrt{((F_T)^2 + (F_{KI})^2)}$$

The thermal change of zero signal and output span F, is specified in chapter " Technical data". The basic temperature error F_T is shown in a graphic. Depending on the measuring cell version and Turn down, this value must be multiplied with the additional factors FMZ and FTD:

Also these values are specified in chapter " Technical data".

This applies initially to the digital signal output through HART. Profibus PA, Foundation Fieldbus or Modbus.

With 4 ... 20 mA output, the thermal change of the current output F_a must be added:

$$F_{perf} = \sqrt{((F_T)^2 + (F_K)^2 + (F_S)^2)}$$

To provide a better overview, the formula symbols are listed together below:

- F_{total}: Total deviation

- F_{peri}: Basic deviation
 F_{stab}: Long-term stability
 F_T: Thermal change of zero signal and output span (temperature error)
- F_k: Deviation
- F: Thermal change of the current output
- FMZ: Additional factor measuring cell version
- FTD: Additional factor Turn down

10.8 Calculation of the total deviation - Practical example

Data

Pressure measurement in the pipeline 4 bar (400 KPa), product temperature 40 °C

VEGABAR 83 with measuring range 10 bar, deviation < 0.1 %, process fitting G1 (piezoresistive measuring cell)

The required values for the temperature error F_T, deviation F_{KI} and long-term stability F_{stab} are available in the technical data.

1. Calculation of the Turn down

TD = 10 bar/4 bar, TD = 2.5 : 1

2. Determination temperature error $F_{_{\rm T}}$

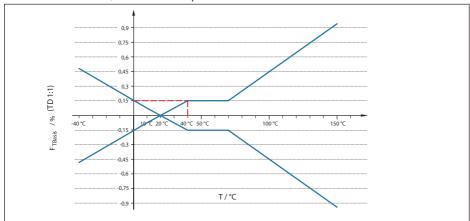


Fig. 41: Determination of the basic temperature error for the above example: $F_{TBasis} = 0.15\%$

Accuracy class	0.075 %, 0.1 %	0.2 %
Factor FMZ	1	3

Tab. 56: Determination of the additional factor measuring cell for above example: $F_{MZ} = 1$

Turn Down	TD 1:1	TD 2.5 : 1	TD 5:1	TD 10:1	TD 20 : 1
Factor FTD	1	1.75	3	5.5	10.5

Tab. 57: Determination of the additional factor "turn down" for the above example: $F_{TD} = \frac{1.75}{1.75}$

 $F_{\scriptscriptstyle T} = F_{\scriptscriptstyle TBasis} \ x \ F_{\scriptscriptstyle MZ} \ x \ F_{\scriptscriptstyle TD}$

 $F_{T} = 0.15 \% \times 1 \times 1.75$

 $F_{\tau} = \frac{0.26 \%}{}$

3. Determination of deviation and long-term stability

Accuracy class	Non-linearity, hysteresis and non-repeatability		
	TD ≤ 5:1	TD > 5:1	
0.05 %	< 0.05 %	< 0.01 % x TD	
0.1 %	< 0.1 %	< 0.02 % x TD	
0.2 %	< 0.2 %	< 0.04 % x TD	

Tab. 58: Determination of the deviation from table: $F_{KI} = \frac{0.1 \%}{100}$

Version	
Measuring ranges > 1 bar	< 0.1 % x TD/year
Measuring ranges > 1 bar, isolating liquid, synthetic oil, diaphragm Elgiloy (2.4711)	< 0.15 % x TD/year
Measuring range 1 bar	< 0.15 % x TD/year
Measuring range 0.4 bar	< 0.35 % x TD/year

Tab. 59: Determination of the long-term stability from the table, consideration for one year: $F_{\text{ent}} = 0.1 \% \times \text{TD/year}$

4. Calculation of the total deviation - digital signal outputs

- 1. step: Basic accuracy F part

$$F_{perf} = \sqrt{((F_T)^2 + (F_{KI})^2)}$$

 $F_T = 0.26 \%$

$$F_{\text{kl}} = 0.1 \%$$

$$F_{perf} = \sqrt{(0.26 \%)^2 + (0.1 \%)^2}$$

$$F_{perf} = 0.28 \%$$

- 2. step: Total deviation F

$$F_{total} = F_{perf} + F_{stab}$$

$$F_{port} = 0.28 \%$$
 (result of step 1)

$$F_{stab} = (0.1 \% x TD)$$

$$F_{stab} = (0.1 \% x 2.5)$$

$$F_{stab} = 0.25 \%$$

$$F_{total} = 0.28 \% + 0.25 \% = 0.53 \%$$

The total deviation of the measurement is hence 0.53 %.

Deviation in bar: 0.53 % of 4 bar = 0.021 bar

The example shows that the measurement error in practice can be considerably higher than the basic accuracy. Reasons are temperature influence and Turn down.

10.9 Dimensions

The following dimensional drawings represent only an extract of the possible versions. Detailed dimensional drawings can be downloaded at www.vega.com under " Downloads" and " Drawings".

Housing

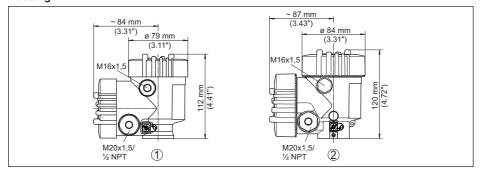


Fig. 42: Dimensions of housing (with integrated display and adjustment module the housing is 9 mm/0.35 inches or 18 mm/0.71 in higher)

- Plastic double chamber
- Aluminium/Stainless steel double chamber

External housing on IP68 version

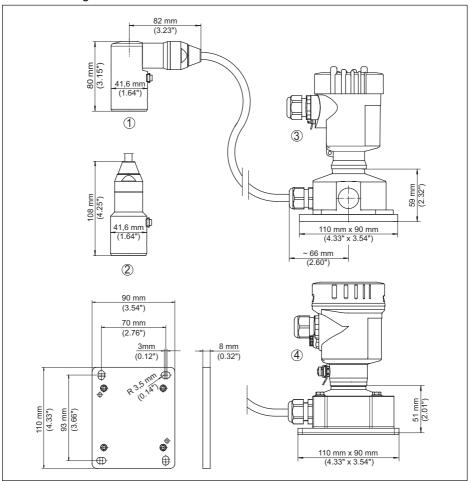


Fig. 43: VEGABAR 83, IP68 version with external housing

- 1 Lateral cable outlet
- 2 Axial cable outlet
- 3 Plastic single chamber
- 4 Stainless steel single chamber
- 5 Seal 2 mm (0.079 in), (only with 3A approval)

VEGABAR 83, threaded fitting not front-flush

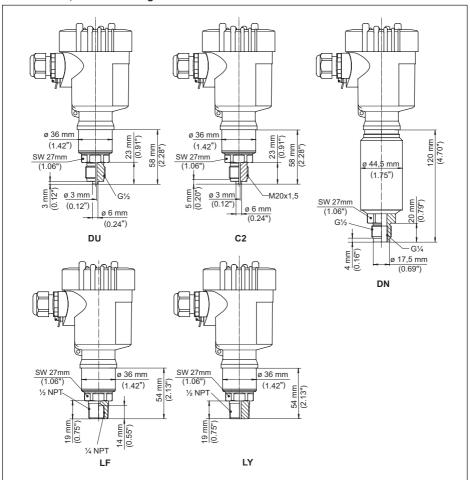


Fig. 44: VEGABAR 83, threaded fitting not front-flush

DU G1/2. EN 837: manometer connection

C2 M20 x 1.5 EN 837: manometer connection

DN G1/2, inside G1/4, ISO 228-1

LF 1/2 NPT, inside 1/4 NPT, ASME B1.20.1

LY 1/2 NPT PN 1000

VEGABAR 83, threaded fitting front-flush

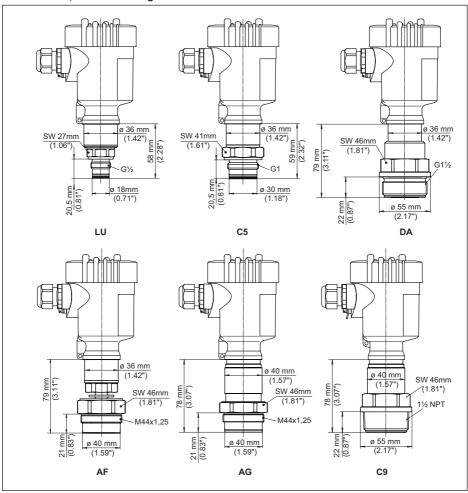


Fig. 45: VEGABAR 83, threaded fitting front-flush

LU G1/2, ISO 228-1; front-flush; with O-ring

C5 G1, ISO 228-1

DA G11/2, DIN 3852-A

AF M44 x 1.25 DIN 13; pressure screw: Aluminium

AG M44 x 1.25 DIN 13; pressure screw: 316L

AF/AG/DA with

with temperature adapter and screen sheet for 180 °C/200 °C

C9 11/2 NPT, ASME B1.20.1

VEGABAR 83, hygienic fitting 150 °C (piezoresistive/strain gauge measuring cell)

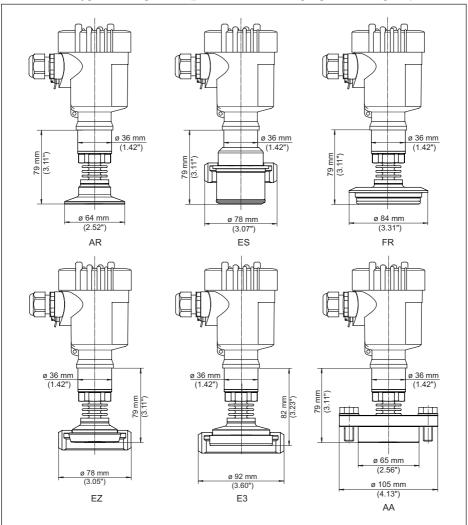


Fig. 46: VEGABAR 83, hygienic fitting 150 °C (piezoresistive/strain gauge measuring cell)

- AR Clamp 2" PN 16 (ø 64 mm) DIN 32676, ISO 2852
- ES Hygienic connection with compression nut F40 PN 25
- FR Varivent N50-40 PN 25
- EZ Collar socket DN 40 PN 40, DIN 11851
- E3 Collar socket DN 50 PN 25 Form A, DIN 11864; for tube 53 x 1.5
- AA DRD PN 40

VEGABAR 83, hygienic fitting 150 °C (METEC® measuring cell)

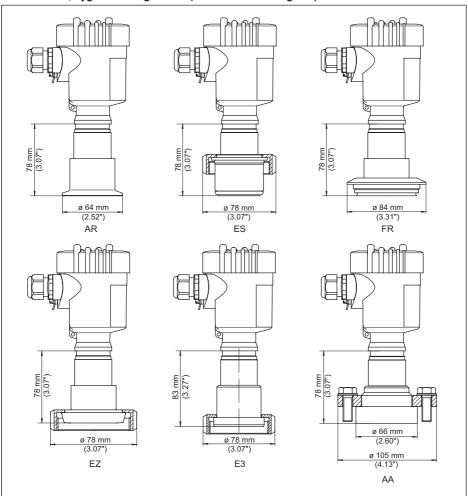


Fig. 47: VEGABAR 83, hygienic fitting 150 °C (METEC® measuring cell)

- AR Clamp 2" PN 16 (ø 64 mm) DIN 32676, ISO 2852
- ES Hygienic fitting with compression nut F 40 PN 25
- FR Varivent N50-40 PN 25
- EZ Collar socket DN 40 PN 40, DIN 11851
- E3 Collar socket DN 50 PN 25 Form A, DIN 11864; for tube 53 x 1.5
- AA DRD PN 40

VEGABAR 83, flange connection 150 °C (piezoresistive/strain gauge measuring cell)

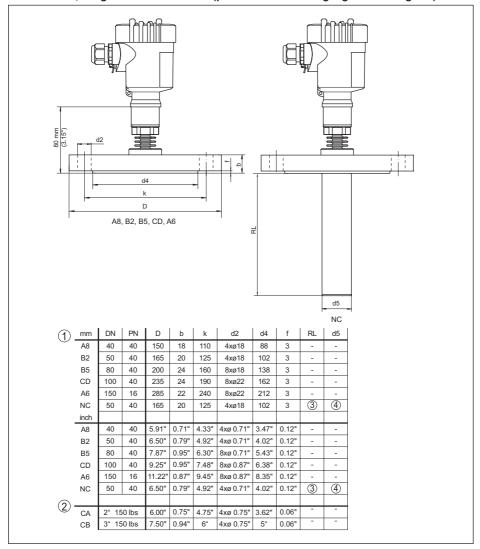


Fig. 48: VEGABAR 83, flange connection 150 °C (piezoresistive/strain gauge measuring cell)

- 1 Flange connection according to DIN 2501
- 2 Flange connection according to ASME B16.5
- 3 Order-specific
- 4 Order-specific

VEGABAR 83, flange connection 180 °C/200 °C (METEC® measuring cell)

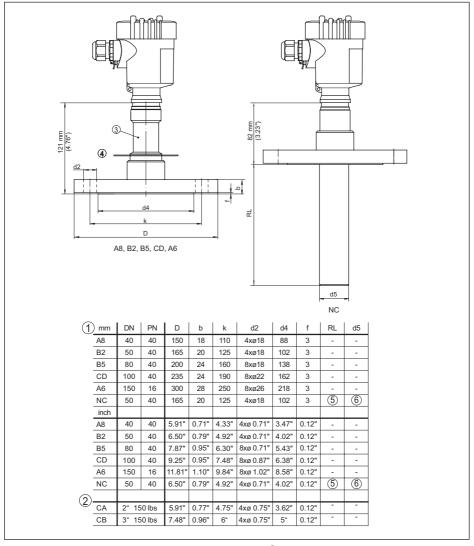


Fig. 49: VEGABAR 83, flange connection 180 °C/200 °C (METEC® measuring cell)

- 1 Flange connection according to DIN 2501
- 2 Flange connection according to ASME B16.5
- 3 Temperature adapter up to 180 °C
- 4 Temperature screen sheet up to 200 °C
- 5 Order-specific
- 6 Order-specific

VEGABAR 83, connection acc. to IEC 61518

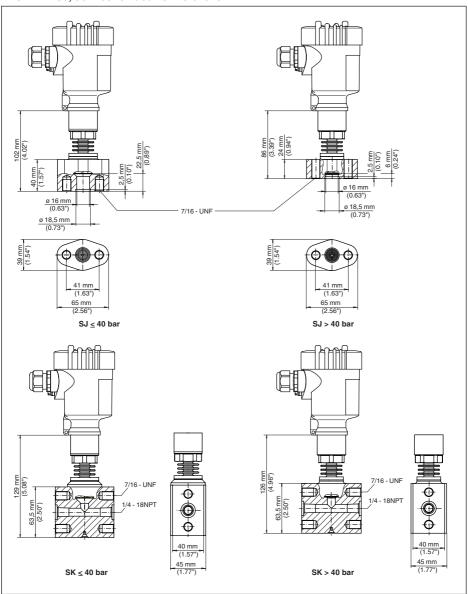


Fig. 50: VEGABAR 83, connection acc. to IEC 61518

- SJ Oval flange adapter
- SK Top flange

For the version with " Second Line of Defense", the measure of length increases by 17 mm (0.67 in).

10.10 Industrial property rights

VEGA product lines are global protected by industrial property rights. Further information see www.vega.com.

VEGA Produktfamilien sind weltweit geschützt durch gewerbliche Schutzrechte.

Nähere Informationen unter www.vega.com.

Les lignes de produits VEGA sont globalement protégées par des droits de propriété intellectuelle. Pour plus d'informations, on pourra se référer au site www.vega.com.

VEGA lineas de productos están protegidas por los derechos en el campo de la propiedad industrial. Para mayor información revise la pagina web www.vega.com.

Линии продукции фирмы ВЕГА защищаются по всему миру правами на интеллектуальную собственность. Дальнейшую информацию смотрите на сайте <u>www.vega.com</u>.

VEGA系列产品在全球享有知识产权保护。

进一步信息请参见网站< www.vega.com。

10.11 Trademark

All the brands as well as trade and company names used are property of their lawful proprietor/originator.

INDEX

Α

Adjust Date/Time 39 Adjustment 30, 34, 35

- Process pressure 33, 34
- -System 28
- -Unit 32

Adjustment system 28

C

Change the language 37 Connection procedure 21 Connection technology 21 Copy sensor settings 39

D

Damping 35 Display lighting 37

E

Electronics compartment 23 Error codes 49, 50 Event memory 47

F

Fault rectification 51 Functional principle 9

L

Linearisation 35

M

Maintenance 47 Measured value memory 47 Measurement setup 17, 18, 19

Ν

NAMUR NE 107 48

О

Oxygen applications 15

P

Parameterization example 32 Peak value 38 Position correction 32 Pressure compensation 16 Process pressure measurement 17

R

Repair 53

Reset 39

S

Seal concept 11 Service access 40 Service hotline 51 Set display parameters 37 Simulation 38

Printing date:

All statements concerning scope of delivery, application, practical use and operating conditions of the sensors and processing systems correspond to the information available at the time of printing.

Subject to change without prior notice

© VEGA Grieshaber KG, Schiltach/Germany 2022

46295-EN-220624