Operating Instructions

Single-channel signal conditioning instrument for level detection with 4 ... 20 mA sensors

VEGATOR 141

Document ID: 46838

Contents

1	Abou	t this document	. 4
	1.1	Function	
	1.2	Target group	
	1.3	Symbols used	
2	For y	our safety	. 5
	2.1	Authorised personnel	
	2.2	Appropriate use	
	2.3	Warning about incorrect use	. 5
	2.4	General safety instructions	
	2.5	EU conformity	
	2.6	Safety label on the instrument	
	2.7	SIL conformity (optional)	. 6
	2.8 2.9	Installation and operation in the USA and Canada	
	2.9	Safety instructions for Ex areas Environmental instructions	
3	Produ	uct description	
	3.1	Configuration	
	3.2	Principle of operation	
	3.3	Adjustment	
	3.4	Packaging, transport and storage	
4	Mour	ting	. 9
	4.1	Mounting instructions	. 9
5	Conn	ecting to power supply	10
5	5.1	Preparing the connection	
	5.1 5.2	Input mode active/passive	
	5.2 5.3	Connection procedure	
	5.4	Wiring plan	
	5.5	Connection example, mixed operation active/passive	
~	•)	
6			
	6.1 6.2	Adjustment system	
	6.2 6.3	Switching point adjustment with 4 20 mA sensor (continuous)	
	6.4	Switching point adjustment with a 20 mA sensor (continuous)	17
	6.5	Proof test.	18
	6.6	Function diagram	
-		enance and fault rectification	
7			
	7.1	Maintenance	
	7.2 7.3	Rectify faults How to proceed if a repair is necessary	
8	Dism	ount	
	8.1	Dismounting steps	
	8.2	Disposal	22
9	Supp	lement	23
-	9.1	Technical data	
	9.2	Dimensions	

46838-EN-170907

9.3	Industrial property rights	. 26
9.4	Trademark	26

Supplementary documentation

Information: Supplementar

Supplementary documents appropriate to the ordered version come with the delivery. You can find them listed in chapter "*Product description*".

Editing status: 2017-09-04

1 About this document

1.1 Function

This operating instructions manual provides all the information you need for mounting, connection and setup of the instrument. Furthermore there are important instructions for maintenance, fault rectification, the exchange of parts and the safety of the user. Please read this information before putting the instrument into operation and keep this manual accessible in the immediate vicinity of the device.

1.2 Target group

This operating instructions manual is directed to trained specialist personnel. The contents of this manual should be made available to these personnel and put into practice by them.

1.3 Symbols used

Information, tip, note

This symbol indicates helpful additional information.

Caution: If this warning is ignored, faults or malfunctions can result.

Warning: If this warning is ignored, injury to persons and/or serious damage to the instrument can result.

Danger: If this warning is ignored, serious injury to persons and/or destruction of the instrument can result.

Ex applications

This symbol indicates special instructions for Ex applications.

SIL applications

This symbol indicates instructions for functional safety which must be taken into account particularly for safety-relevant applications.

List

The dot set in front indicates a list with no implied sequence.

 \rightarrow Action

This arrow indicates a single action.

1 Sequence of actions

Numbers set in front indicate successive steps in a procedure.

Battery disposal

This symbol indicates special information about the disposal of batteries and accumulators.

2 For your safety

2.1 Authorised personnel

All operations described in this operating instructions manual must be carried out only by trained specialist personnel authorised by the plant operator.

During work on and with the device the required personal protective equipment must always be worn.

2.2 Appropriate use

VEGATOR 141 is a universal signal conditioning instrument for connection of 4 \dots 20 mA sensors.

You can find detailed information about the area of application in chapter "*Product description*".

Operational reliability is ensured only if the instrument is properly used according to the specifications in the operating instructions manual as well as possible supplementary instructions.

For safety and warranty reasons, any invasive work on the device beyond that described in the operating instructions manual may be carried out only by personnel authorised by the manufacturer. Arbitrary conversions or modifications are explicitly forbidden.

2.3 Warning about incorrect use

Inappropriate or incorrect use of the instrument can give rise to application-specific hazards, e.g. vessel overfill or damage to system components through incorrect mounting or adjustment. Thus damage to property, to persons or environmental contamination can be caused. Also the protective characteristics of the instrument can be influenced.

2.4 General safety instructions

This is a state-of-the-art instrument complying with all prevailing regulations and directives. The instrument must only be operated in a technically flawless and reliable condition. The operator is responsible for the trouble-free operation of the instrument. When measuring aggressive or corrosive media that can cause a dangerous situation if the instrument malfunctions, the operator has to implement suitable measures to make sure the instrument is functioning properly.

During the entire duration of use, the user is obliged to determine the compliance of the necessary occupational safety measures with the current valid rules and regulations and also take note of new regulations.

The safety instructions in this operating instructions manual, the national installation standards as well as the valid safety regulations and accident prevention rules must be observed by the user.

For safety and warranty reasons, any invasive work on the device beyond that described in the operating instructions manual may be carried out only by personnel authorised by the manufacturer. Arbi-

trary conversions or modifications are explicitly forbidden. For safety reasons, only the accessory specified by the manufacturer must be used.

To avoid any danger, the safety approval markings and safety tips on the device must also be observed and their meaning looked up in this operating instructions manual.

2.5 EU conformity

The device fulfils the legal requirements of the applicable EU directives. By affixing the CE marking, we confirm the conformity of the instrument with these directives.

You can find the EU conformity declaration on our website under www.vega.com/downloads.

2.6 Safety label on the instrument

The safety approval markings and safety tips on the device must be observed.

2.7 SIL conformity (optional)

Instruments with SIL option fulfill the requirements of functional safety according to IEC 61508. You can find further information in the supplied Safety Manual.

2.8 Installation and operation in the USA and Canada

This information is only valid for USA and Canada. Hence the following text is only available in the English language.

Installations in the US shall comply with the relevant requirements of the National Electrical Code (ANSI/NFPA 70).

Installations in Canada shall comply with the relevant requirements of the Canadian Electrical Code

2.9 Safety instructions for Ex areas

Please note the Ex-specific safety information for installation and operation in Ex areas. These safety instructions are part of the operating instructions manual and come with the Ex-approved instruments.

2.10 Environmental instructions

Protection of the environment is one of our most important duties. That is why we have introduced an environment management system with the goal of continuously improving company environmental protection. The environment management system is certified according to DIN EN ISO 14001.

Please help us fulfil this obligation by observing the environmental instructions in this manual:

- Chapter "Packaging, transport and storage"
- Chapter "Disposal"

3 **Product description** 3.1 Configuration Scope of delivery The scope of delivery encompasses: VEGATOR 141 signal conditioning instrument Documentation This operating instructions manual - Ex-specific "Safety instructions" (with Ex version) Safety Manual "Functional safety (SIL) acc. to IEC 61508" (with SIL version) If necessary, further certificates Type label The type label contains the most important data for identification and use of the instrument: Instrument type Product code Approvals Technical data Serial number of the instrument Data matrix code for VEGA Tools app Serial number The type label contains the serial number of the instrument. With it you can find the following data on our homepage: Product code of the instrument (HTML) Delivery date (HTML) Order-specific instrument features (HTML) Operating instructions at the time of shipment (PDF) Safety instructions and certificates • Go to "www.vega.com", "Instrument search (serial number)". Enter the serial number. Alternatively, you can access the data via your smartphone: • Download the "VEGA Tools" app from the "Apple App Store" or the "Google Play Store" Scan the Data Matrix code on the type label of the instrument or Enter the serial number manually in the app Principle of operation 3.2 The VEGATOR 141 is a single-channel signal conditioning instru-Application area ment for level detection with 4 ... 20 mA sensors. Simple monitoring and control functions can be realised via the integrated relay. Typical applications are monitoring functions such as overfill and dry run protection. An optional fail safe relay is also available. Functional principle The VEGATOR 141 signal conditioning instrument powers the connected sensors and simultaneously processes their measuring signals. Each input is continuously monitored for line break or short-circuit. In addition, fault messages delivered by the sensor are processed. The current of a connected 4 ... 20 mA sensor is measured and evaluated. The switching point of the relay can be adjusted to any in-

	dividual current by using the potentiometer. The output relay switches when this current is reached (in dependence on the set mode).
Voltage supply	Wide range power supply with a nominal voltage of 24 \dots 230 V AC, 50/60 Hz or 24 \dots 65 V DC.
	Detailed information about the power supply can be found in chapter " <i>Technical data</i> ".
	3.3 Adjustment
	All adjustment elements are located under a hinged front cover. The operating mode and the switching delay can be set via a DIL switch block. The switching point can be adjusted via a potentiometer.
	3.4 Packaging, transport and storage
Packaging	Your instrument was protected by packaging during transport. Its capacity to handle normal loads during transport is assured by a test based on ISO 4180.
	The packaging of standard instruments consists of environment- friendly, recyclable cardboard. For special versions, PE foam or PE foil is also used. Dispose of the packaging material via specialised recycling companies.
Transport	Transport must be carried out in due consideration of the notes on the transport packaging. Nonobservance of these instructions can cause damage to the device.
Transport inspection	The delivery must be checked for completeness and possible transit damage immediately at receipt. Ascertained transit damage or con- cealed defects must be appropriately dealt with.
Storage	Up to the time of installation, the packages must be left closed and stored according to the orientation and storage markings on the outside.
	Unless otherwise indicated, the packages must be stored only under the following conditions:
	Not in the openDry and dust free
	 Not exposed to corrosive media Protected against solar radiation
	 Avoiding mechanical shock and vibration
Storage and transport temperature	 Storage and transport temperature see chapter "Supplement - Technical data - Ambient conditions" Relative humidity 20 85 %
Lifting and carrying	With an instrument weight of more than 18 kg (39.68 lbs) suitable and approved equipment must be used for lifting and carrying.

4 Mounting

4.1 Mounting instructions

VEGATOR 141 is designed for carrier rail mounting (top hat rail 35 x 7.5 according to DIN EN 50022/60715). Due to its protection rating of IP 20, the instrument is suitable for mounting in switching cabinets. It can be mounted horizontally and vertically.

• Note: When

When several instruments are mounted together without space in between, the ambient temperature at the installation location of the instrument must not exceed 60 °C. Around the ventilation slots there must be a distance of at least 2 cm to the next component.

The VEGATOR 141 in Ex version is an associated, intrinsically safe instrument and must not be installed in hazardous areas. Safe operation is only ensured if the operating instructions and EU Type Approval Certificate are observed. VEGATOR 141 must not be opened. A certification for Ex Zone 2 is also available as an option.

Ambient conditions

The instrument is suitable for standard ambient conditions acc. to DIN/EN/IEC/ANSI/ISA/UL/CSA 61010-1.

Make sure that the degree of contamination specified in chapter "*Technical data*" meets the existing ambient conditions.

	5 Connecting to power supply
Safety instructions	5.1 Preparing the connection Always keep in mind the following safety instructions:
\wedge	Warning: Connect only in the complete absence of line voltage.
	 Connect only in the complete absence of line voltage If overvoltage surges are expected, overvoltage arresters should be installed
i	Note: Install a separating facility for the instrument which is easy to access. The separating facility must be marked for the instrument (IEC/ EN 61010).
Safety instructions for Ex applications	In hazardous areas you must take note of the respective regulations, conformity and type approval certificates of the sensors and power supply units.
Voltage supply	The nominal range of the voltage supply can be 24 230 V AC, 50/60 Hz or 24 65 V DC.
	Detailed information about the power supply can be found in chapter " <i>Technical data</i> ".
Connection cable	The voltage supply of VEGATOR 141 is connected with standard cable according to the national installation standards.
	The sensors are connected with standard two-wire cable without screen. If electromagnetic interference is expected which is above the test values of EN 61326 for industrial areas, screened cable should be used.
	Make sure that the cable used has the required temperature resist- ance and fire safety for max. occurring ambient temperature
Cable screening and grounding	Connect the cable screen on both ends to ground potential. In the sensor, the screen must be connected directly to the internal ground terminal. The ground terminal on the outside of the sensor housing must be connected to the potential equalisation (low impedance).
	If potential equalisation currents are expected, the connection on the processing side must be made via a ceramic capacitor (e. g. 1 nF, 1500 V). The low-frequency potential equalisation currents are thus suppressed, but the protective effect against high frequency interference signals remains.
Connection cable for Ex applications	Take note of the corresponding installation regulations for Ex applica- tions. In particular, make sure that no potential equalisation currents flow over the cable screen. In case of grounding on both sides this can be achieved by the use of a capacitor or a separate potential equalisation.

5.2 Input mode active/passive

Through the selection of the terminals, you can choose between active and passive operation of the measuring data intput.

- In active mode, VEGATOR 141 provides the power for the connected sensors. Power and measurement data are transmitted over the same two-wire cable. This mode is provided for connection of measuring transducers without separate power supply (sensors in two-wire version).
- In passive mode, the sensors are not powered, only the measured value is transmitted. This input is provided for connection of transducers with their own separate voltage supply (sensors in four-wire version). Furthermore the VEGATOR 141 can be looped like a standard ammeter into the existing circuit. It is thus possible to control multiple signal conditioning instruments with one sensor to detect different limit levels.

Note:

With a VEGATOR 141 in Ex version, the passive input is not available for approval technical reasons.

5.3 Connection procedure

The pluggable terminals can be removed as needed to allow more convenient connection. To make the electrical connection, proceed as follows:

- 1. Mount the instrument as described in the previous chapter
- 2. Connect sensor cable to terminal 1/2, and where applicable, connect the screen
- 3. Connect switched-off power supply to terminal 16/17
- 4. Connect relay to terminal 10/11/12
- 5. Option with fail safe relay: Connect relay to terminal 13/14/15

The electrical connection is finished.

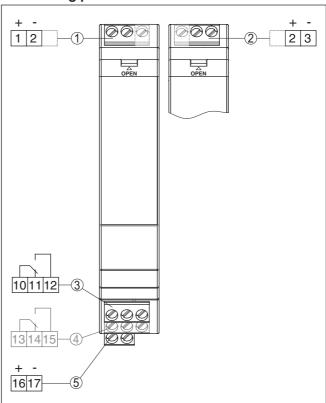


Fig. 1: Wiring plan VEGATOR 141

- 1 Sensor circuit (4 ... 20 mA), active input
- 2 Sensor circuit (4 ... 20 mA), passive input¹⁾
- 3 Relay output
- 4 Fail safe relay (optional)
- 5 Voltage supply

Information:

The connection terminals can be detached towards the front, if necessary. This can be useful when working in tight spaces or when exchanging an instrument.

5.5 Connection example, mixed operation active/ passive

With this wiring configuration, one sensor can actuate multiple signal conditioning instruments and thus detect several different limit levels.

46838-EN-170907

• Note: The in

The internal resistance of the passive input must be viewed as a 100 Ω load when connecting multiple instruments.

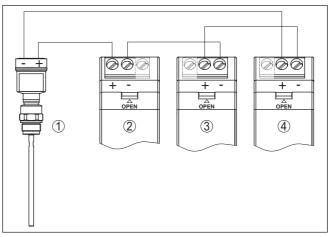


Fig. 2: Connection example, mixed operation active/passive

- 1 Sensor
- 2 VEGATOR 141, active input
- 3 VEGATOR 141, passive input
- 4 VEGATOR 141, passive input

6 Setup

6.1 Adjustment system

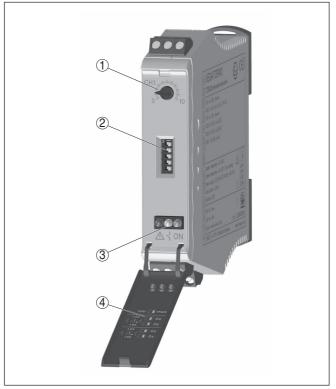


Fig. 3: Display and adjustment elements

- 1 Potentiometer for switching point adjustment
- 2 DIL switch block
- 3 Signal lamps (LEDs)
- 4 Hinged front cover

6.2 Adjustment elements

Control lamps

Control lamps (LED) in the front plate indicate operation, switching status and fault signal.

- Green
 - Operating control lamp
 - Mains voltage on, instrument is operating
- Red
 - Fault indicator
 - Fault on the sensor circuit due to sensor failure or line break
 - The relay deenergises in case of failure

- Yellow
 - Relay control lamp
 - Lights with activated (current-carrying) relay status

Front cover The adjustment elements are located under a hinged front cover. To open it, use a small screwdriver in conjunction with the slot on the upper side of the front cover. To close it, push the cover at bottom and top firmly onto the front cover until you hear the two retaining clips snap in.

DIL switch block The DIL switch block

The DIL switch block is located behind the front cover. The individual switches are assigned as follows:

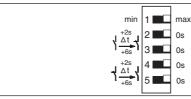


Fig. 4: DIL switch VEGATOR 141

- 1 Mode (min./max. adjustment)
- 2 Switch-on delay 2 seconds
- 3 Switch-on delay 6 seconds
- 4 Switch-off delay 2 seconds
- 5 Switch-off delay 6 seconds

 Mode (min./max. adjustment)
 The requested operating mode is set with the min./max. switch (min. detection i.e. dry run protection or max. detection i.e. overfill protection)

- Dry run protection: Relay is switched off when the level falls below the min. level (safe currentless state), relay is switched on again when the min. level is exceeded (switch-on point > switch-off point)
- Overflow protection: Relay is switched off when the max. level is exceeded (safe currentless state), relay is switched on again when the level falls below the max. level (switch-on point < switch-off point)

Note: Select

Selection of the mode on the signal conditioning instrument only functions correctly if the 4 ... 20 mA characteristics are set in the sensor.

Switch-on/Switch-off delay

With these switches you can delay the changeover of the relays by the set time. This can be useful, e.g. with fluctuating product surfaces, for preventing unwanted switching commands. The switch-on/off delays can be set independently of each other. If both switches, e.g. of the switch-on delay, are activated, the times sum up. Delays of 2, 6 or 8 seconds can thus be adjusted.

т

Information:

Keep in mind that the switching delay of the sensor and signal conditioning instrument accumulate.

Potentiometer for switching point adjustment

The relay switching point is adjusted via a potentiometer. You can find a detailed description depending on the mode and the installed sensors in the following chapters.

6.3 Switching point adjustment with 4 ... 20 mA sensor (continuous)

When using a continuously measuring 4 ... 20 mA sensor, the switching point can be set to any position between 0 ... 100 %. Depending on the mode, you now adjust the switching point as described in the following.



Fig. 5: Application examples with 4 ... 20 mA sensor (pressure transmitter or capacitive rod probe)

- Overflow protection (max. 1. Make sure that switch 1 on the DIL switch block is set to "max.". The switches for the switch-on and switch-off delay should be set to "0 s".
 - 2. Set the potentiometer to the right end position, the yellow LED display lights
 - 3. Fill the vessel up to the requested max. level
 - 4. Turn the potentiometer slowly anticlockwise until the vellow LED display extinguishes, the signal conditioning instrument is now ready for operation
 - 1. Make sure that switch 1 on the DIL switch block is set to "min.". The switches for the switch-on and switch-off delay should be set to "0 s".
 - 2. Set the potentiometer to the left end position, the yellow LED display lights
 - Empty the vessel down to the requested min. level
 - 4. Turn the potentiometer slowly clockwise until the yellow LED display extinguishes, the signal conditioning instrument is now ready for operation

6838-EN-170907

Dry run protection (min. operation)

operation)

6.4 Switching point adjustment with capacitive sensor (limit level)

When using a capacitive point level sensors, the switching point is mainly determined through the installation position. Via the potentiometer, the switching point is adapted to the measured medium. Please also observe the operating instructions of the sensor, especially the sensitivity adjustment. Depending on the mode you now adjust the switching point as described in the following.

• Note: In orde

In order to set a reliable, precise switching point, the vessel must be filled (sensor uncovered and covered). If this is not possible, you can carry out the adjustment with an empty vessel up to step 4 and "search" for the (approximate) switching point. Check or adjust the switching point later on during operation when the sensor is covered.

Overflow protection (max. operation)

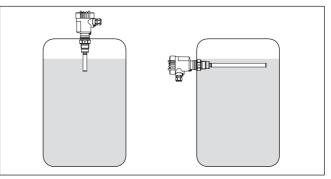


Fig. 6: Application examples of overfill protection with a capacitive point level sensor

- Make sure that switch 1 on the DIL switch block is set to "max.". The switches for the switch-on and switch-off delay should be set to "0 s".
- 2. The vessel should be empty i.e. the sensor must not be covered
- 3. Set the potentiometer to the left end position, the yellow LED display extinguishes
- 4. Turn the potentiometer slowly clockwise until the yellow LED display lights, note the position of the potentiometer
- 5. Continue filling the vessel until the sensor is completely covered, the yellow LED display extinguishes
- Turn the potentiometer slowly clockwise until the yellow LED display lights again, note also this position of the potentiometer
- Calculate the average value from these two values and set it on the potentiometer, the signal conditioning instrument is then ready for operation

Dry run protection (min. operation)

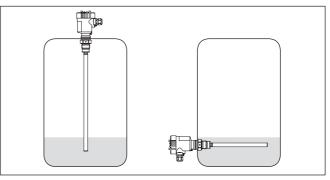


Fig. 7: Application examples of dry run protection with a capacitive point level sensor

- Make sure that switch 1 on the DIL switch block is set to "min.". The switches for the switch-on and switch-off delay should be set to "0 s".
- 2. The vessel should be empty i.e. the sensor must not be covered
- Set the potentiometer to the left end position, the yellow LED display lights
- 4. Turn the potentiometer slowly clockwise until the yellow LED display extinguishes, note the position of the potentiometer
- 5. Continue filling the vessel until the sensor is completely covered, the yellow LED display lights
- 6. Turn the potentiometer slowly clockwise until the yellow LED display extinguishes again, note also this position of the potentiometer
- Calculate the average value from these two values and set it on the potentiometer, the signal conditioning instrument is then ready for operation

6.5 Proof test

Note:

When handling environmentally hazardous substances, danger to the environment and to persons must be avoided. After setup, the proper functioning of the instrument must be ensured by means of the proof test described below.

- Detection of line break: Disconnect the sensor cable for the duration of this test
 - The red fault LED must light up
 - The relay must be deenergized
- Detection of short-circuit: Short-circuit the sensor cable for the duration of this test
 - The red fault LED must light up
 - The relay must be deenergized

46838-EN-170907

- Switching point monitoring (overflow protection): Fill the vessel up to the set switching point
 - When the switching point is reached, the respective relay must deenergize
- Switching point monitoring (dry run protection): Empty the vessel down to the set switching point
 - When the switching point is reached, the respective relay must deenergize

6.6 Function diagram

The following diagram provides an overview of the switching statuses depending on the set mode and the level.

Note:

Selection of the mode on the signal conditioning instrument only functions correctly if the 4 ... 20 mA characteristics are set in the sensor.

Single-point control/limit level

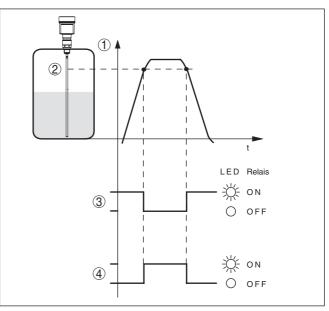


Fig. 8: Function diagram, single-point control

- 1 Filling height
- 2 Switching point
- 3 Mode overfill protection
- 4 Mode dry run protection

Fail safe relay (optional)

On the instrument version with fail-safe relay, the relay is switched on under normal operating conditions. In case of fault, the relay is switched off (safe currentless state).

46838-EN-170907

7 Maintenance and fault rectification

7.1 Maintenance

If the device is used properly, no special maintenance is required in normal operation.

7.2 Rectify faults

Causes of malfunction Maximum reliability is ensured. Nevertheless, faults can occur during operation. These may be caused by the following, e.g.:

- Measured value from sensor not correct
- Voltage supply
- Interference in the cables

Fault rectification
 The first measure to be taken is to check the input and output signals. The procedure is described as follows. In many cases the causes can be determined this way and faults can be easily rectified.
 24 hour service hotline
 Should these measures not be successful, please call in urgent cases the VEGA service hotline under the phone no. +49 1805 858550. The hotline is manned 7 days a week round-the-clock. Since we offer this service worldwide, the support is only available in the English language. The service is free, only standard call charges are incurred.

Reaction after fault recti-
ficationDepending on the reason for the fault and the measures taken, the
steps described in chapter "Set up" may have to be carried out again.

Red fault LED lights up

Cause	Rectification
Sensor not connected correctly	 In Ex systems, make sure that the Ex protection is not influenced by the measuring instruments used Measure the current and voltage on the connec- tion cable to the sensor Faults in the sensor causing a current change to below 3.6 mA or over 21 mA lead to a fault signal in the signal conditioning instruments The terminal voltage at the sensor must be within the specified range. You can find this voltage range in the operating instructions of the con- nected sensor

Cause	Rectification
Sensor current < 3.6 mA	 Check signal conditioning instrument Check the terminal voltage on the signal conditioning instrument; if it is < 17 V, the signal conditioning instrument is defective -> exchange signal conditioning instrument or return it for repair If the terminal voltage is > 17 V, disconnect the sensor cable at the signal conditioning instrument and replace it with a 1 kΩ resistor. If the fault signal does not disappear, the signal conditioning instrument is defective -> exchange signal conditioning instrument is defective -> exchange signal conditioning instrument or return it for repair Check sensor or sensor cable Reconnect the sensor cable to the signal conditioning instrument, disconnect the sensor and replace it with a 1 kΩ resistor. If the fault signal does not disappear, then the sensor cable is broken -> replace the sensor cable If there is no longer a fault signal on the line, the sensor is defective -> exchange sensor or return it for repair
Sensor current > 21 mA	 Check signal conditioning instrument Disconnect sensor cable and replace it with a 1 kΩ resistor. If the fault signal does not disappear, the signal conditioning instrument is defective -> exchange signal conditioning instrument or return it for repair Check sensor or sensor cable Reconnect the sensor cable to the signal conditioning instrument, disconnect the sensor and replace it with a 1 kΩ resistor. If the fault signal does not disappear, then the sensor cable is short-circuited -> eliminate the short-circuit or replace the sensor cable If there is no longer a fault signal on the line, the sensor is defective -> exchange sensor or return it for repair

7.3 How to proceed if a repair is necessary

You can find an instrument return form as well as detailed information about the procedure in the download area of our homepage: <u>www.vega.com</u>.

By doing this you help us carry out the repair quickly and without having to call back for needed information.

If a repair is necessary, please proceed as follows:

- Print and fill out one form per instrument
- Clean the instrument and pack it damage-proof
- Attach the completed form and, if need be, also a safety data sheet outside on the packaging
- Please contact the agency serving you to get the address for the return shipment. You can find the agency on our home page <u>www.vega.com</u>.

8 Dismount

8.1 Dismounting steps

Take note of chapters "*Mounting*" and "*Connecting to power supply*" and carry out the listed steps in reverse order.

8.2 Disposal

The instrument consists of materials which can be recycled by specialised recycling companies. We use recyclable materials and have designed the electronics to be easily separable.

WEEE directive 2002/96/EG

This instrument is not subject to the WEEE directive 2002/96/EG and the respective national laws. Pass the instrument directly on to a specialised recycling company and do not use the municipal collecting points. These may be used only for privately used products according to the WEEE directive.

Correct disposal avoids negative effects on humans and the environment and ensures recycling of useful raw materials.

Materials: see chapter "Technical data"

If you have no way to dispose of the old instrument properly, please contact us concerning return and disposal.

9 Supplement

9.1 Technical data

Note for approved instruments

The technical data in the respective safety instructions are valid for approved instruments (e.g. with Ex approval). In some cases, these data can differ from the data listed herein.

General data	
Series	Module unit for mounting on carrier rails 35 x 7.5 acc. to EN 50022/60715
Weight	125 g (4.02 oz)
Housing material	Polycarbonate PC-FR
Connection terminals	
 Type of terminal 	Screw terminal
 Wire cross-section 	0.25 mm ² (AWG 23) 2.5 mm ² (AWG 12)
Voltage supply	
Operating voltage	
 Nominal voltage AC 	24 230 V AC (-15 %, +10 %), 50/60 Hz
 Nominal voltage DC 	24 65 V DC (-15 %, +10 %)
Max. power consumption	2 W (8 VA)
Sensor input	
Quantity	1 x 4 20 mA
Type of input (selectable)	
 Active input 	Sensor supply through VEGATOR 141
 Passive input²⁾ 	Sensor has an own power supply
Measured value transmission	
– 4 20 mA	analogue for 4 20 mA sensors
Switching threshold	
 Adjustable in the range 	4 20 mA
- Hysteresis	100 µA
Current limitation	23 mA (permanently short-circuit proof)
Terminal voltage (idle state)	18.2 V DC, ± 5 %
Terminal voltage mode active	17.2 14 V at 4 20 mA
Internal resistance	
 Active input 	200 Ω, ± 1 %
 Passive input 	100 Ω, ± 1 %
Detection line break	≤ 3.6 mA
Detection shortcircuit	≥ 21 mA

²⁾ Not available with Ex version.

Relay output	
Quantity	1 x operating relay, 1 x fail safe relay (optional)
Contact	Floating spdt
Contact material	AgSnO2, hard gold-plated
Switching voltage	min. 10 mV DC, max. 253 V AC/50 V DC
Switching current	min. 10 μA DC, max. 3 A AC, 1 A DC
Breaking capacity ³⁾	min. 50 mW, max. 500 VA, max. 54 W DC
Phase angle $\cos \phi$ with AC	≥ 0.7
Switch-on/Switch-off delay	
– Basic delay	150 ms, ± 10 %
 Adjustable delay 	2/6/8 s, ± 20 %
Indicators	
LED displays	
 Status, operating voltage 	1 x LED green
 Status, fault signal 	1 x LED red
 Status, operating relay 	1 x LED yellow
Adjustment	
5 x DIL switch	Adjustment mode, switching delay
1 x potentiometer	for switching point adjustment
Ambient conditions	
Ambient temperature at the installation site of the instrument	-20 +60 °C (-4 +140 °F)
Storage and transport temperature	-40 +70 °C (-40 +158 °F)
Relative humidity	< 96 %
Electrical protective measures	
Protection rating	IP 20
Overvoltage category (IEC 61010-1)	
- up to 2000 m (6562 ft) above sea level	II
 up to 5000 m (16404 ft) above sea level 	II - Only with connected overvoltage protection
 up to 5000 m (16404 ft) above sea level 	Ι
	1
Protection class	

Reliable separation according to VDE 0106 part 1 between all circuits

- Reference voltage 253 V

³⁾ If inductive loads or stronger currents are switched through, the gold plating on the relay contact surface will be permanently damaged. The contact is then no longer suitable for switching low-level signal circuits.

Insulation resistance

4.2 kV

Approvals

Instruments with approvals can have different technical specifications depending on the version.

For that reason the associated approval documents of these instruments have to be carefully noted. They are part of the delivery or can be downloaded under <u>www.vega.com</u> "*Instrument search (serial number)*" as well as in the general download area.

9.2 Dimensions

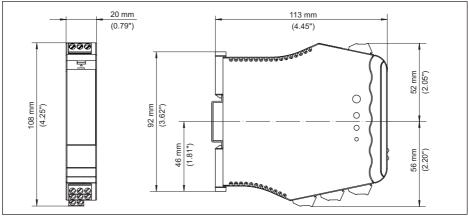


Fig. 9: Dimensions VEGATOR 141

9.3 Industrial property rights

VEGA product lines are global protected by industrial property rights. Further information see <u>www.vega.com</u>.

VEGA Produktfamilien sind weltweit geschützt durch gewerbliche Schutzrechte.

Nähere Informationen unter www.vega.com.

Les lignes de produits VEGA sont globalement protégées par des droits de propriété intellectuelle. Pour plus d'informations, on pourra se référer au site <u>www.vega.com</u>.

VEGA lineas de productos están protegidas por los derechos en el campo de la propiedad industrial. Para mayor información revise la pagina web <u>www.vega.com</u>.

Линии продукции фирмы ВЕГА защищаются по всему миру правами на интеллектуальную собственность. Дальнейшую информацию смотрите на сайте <u>www.vega.com</u>.

VEGA系列产品在全球享有知识产权保护。

进一步信息请参见网站<<u>www.vega.com</u>。

9.4 Trademark

All the brands as well as trade and company names used are property of their lawful proprietor/ originator.

INDEX

С

Cable screen 10 Carrier rail 9 Causes of malfunction 20 Connection 12 Connection cable 10 Connection terminals 11 Control lamps 14

D

Data matrix code 7 DIL switch 15 Documentation 7 Dry run protection 15

Ε

Ex version 9

F

Fail safe relay 19 Fault rectification 20 Four-wire 11

G

Grounding 10

I

Input – Active 11 – Passive 11 Instrument return form 21

L

LEDs 14 Limit level 16, 19

Μ

Mode 15

0

Operating instructions 7 Overflow protection 15

Ρ

Potential equalisation 10 Potentiometer 16 Protection rating 9

R

46838-EN-170907

Recycling 22

Repair 21

S

Sensor input - Active 11 - Passive 11 Serial number 7 Service hotline 20 SIL 6 Single-point control 19 Switching point adjustment 16 Switch-off delay 15 Switch-on delay 15

Т

Two-wire 11 Type label 7

V

VEGA Tools app 7 Voltage supply 10

W

WEEE directive 22

Printing date:

All statements concerning scope of delivery, application, practical use and operating conditions of the sensors and processing systems correspond to the information available at the time of printing.

Subject to change without prior notice

CE

© VEGA Grieshaber KG, Schiltach/Germany 2017

VEGA Grieshaber KG Am Hohenstein 113 77761 Schiltach Germany Phone +49 7836 50-0 Fax +49 7836 50-201 E-mail: info.de@vega.com www.vega.com