

Tecnologie affidabili per l'idrogeno – sfide e soluzioni

L'idrogeno è un vettore energetico promettente, che però pone gli strumenti di misura di fronte a sfide non indifferenti. Quali proprietà particolari rendono difficile la misura? Quali sfide comporta l'impiego in applicazioni ad alta pressione e criogeniche? E quali soluzioni tecniche esistono? Qui rispondiamo alle domande più rilevanti in materia di strumentazione di misura affidabile nel settore dell'idrogeno.

Perché l'idrogeno è così impegnativo per gli strumenti di misura?

Rispetto ad altri gas, l'idrogeno possiede caratteristiche chimiche e fisiche straordinarie. È l'elemento più leggero dell'universo e ha una capacità di diffusione estremamente elevata. Questo significa che può penetrare in molti materiali. Nel caso dei sensori questo può causare affaticamento del materiale e difetti di tenuta. Inoltre l'idrogeno è altamente reattivo: bastano quantità minime di ossigeno per creare miscele esplosive. Pertanto, i sensori di pressione e gli strumenti di misura di livello, non devono solo lavorare con la massima precisione, ma devono anche essere protetti specificamente contro la diffusione e l'infragilimento.

Quali caratteristiche chimiche particolari dell'idrogeno ne rendono difficile la gestione?

Nonostante la semplicità della sua struttura atomica con un solo protone e un solo elettrone, l'idrogeno presenta caratteristiche chimiche complesse. Particolarmente critiche sono:

- Elevata reattività: insieme all'ossigeno, l'idrogeno può creare miscele esplosive l'energia di accensione è 15 volte più bassa di quella del metano
- Capacità di diffusione: le piccole molecole penetrano nei materiali metallici e questo può provocare perdite. Nei sensori di pressione a riempimento d'olio, può a verificarsi, ad esempio, un rigonfiamento dell'olio.
- Infragilimento: nei metalli l'idrogeno si accumula nei bordi del grano e a lungo andare questo può causare un indebolimento o addirittura una rottura improvvisa.

Per ovviare a questi inconvenienti, i produttori di strumenti di misura per la tecnologia dell'idrogeno impiegano materiali speciali come l'acciaio 316L e innovativi rivestimenti, ad esempio in oro e rodio.

Perché la misura di pressione e livello nell'idrogeno è così impegnativa?

L'idrogeno viene stoccato a pressioni molto elevate oppure a temperature estremamente basse. Queste condizioni applicative mettono a dura prova gli strumenti di misura. Spesso l'idrogeno è stoccato a una pressione compresa tra 400 e 700 bar, ad esempio in serbatoi ad alta pressione o in sistemi di compressione. Questo significa che

- i sensori devono resistere a temperature estreme, senza che la precisione risulti compromessa.
- Si deve inoltre impedire l'affaticamento del materiale causato dall'infragilimento da idrogeno.
- A lungo andare, inoltre, la diffusione può compromettere la stabilità delle celle di misura di pressione.

Tel.: +41 44 952 40 00 info.ch@vega.com www.vega.com

Per queste applicazioni VEGA offre soluzioni robuste come il VEGABAR 83, in grado di misurare pressioni fino a 1000 bar. La cella di misura metallica priva di olio impedisce la deriva in seguito alla diffusione di idrogeno, mentre il rivestimento in oro e rodio offre una protezione supplementare.

Per ridurne il volume, l'idrogeno viene inoltre fluidificato e stoccato in forma liquida. A tal fine, il gas viene raffreddato a una temperatura compresa tra -240 e -253 °C. Le temperature estreme rappresentano una grossa sfida per gli strumenti di misura.

- I sensori devono lavorare in maniera stabile a temperature vicine allo zero assoluto.
- I materiali delle guarnizioni devono resistere a temperature estremamente basse senza infragilirsi.
- Si devono evitare ponti termici, poiché minime differenze di temperatura possono causare evaporazione.

Qui VEGA propone i sensori radar a onda guidata della serie VEGAFLEX, che rendono possibili misure di livello affidabili anche con bassi valori di costante dielettrica.

Quali soluzioni offre VEGA per le applicazioni nei processi dell'idrogeno?

VEGA ha sviluppato sensori ad hoc per i processi dell'idrogeno, che lavorano in maniera affidabile anche in condizioni estreme. Alcune delle principali caratteristiche sono:

- Celle di misura CERTEC®: celle di misura in ceramica prive d'olio e quindi non soggette a problemi di diffusione.
- Rivestimenti in oro e rodio:: riducono la diffusione dell'idrogeno in componenti metallici dei sensori e impediscono l'affaticamento del materiale.
- Compensazione di temperatura e pressione: assicura valori di misura precisi anche nei processi dinamici.
- Sistemi di tenuta stagni alla diffusione: impediscono perdite di idrogeno in corrispondenza degli attacchi di processo.

II VEGABAR 83 si presta all'impiego industriale in sistemi ad alta pressione, mentre il VEGABAR 82 con cella di misura in ceramica è concepito specificamente per i prodotti aggressivi come la potassa caustica impiegata negli elettrolizzatori.

Tel.: +41 44 952 40 00 info.ch@vega.com www.vega.com

VEGA Messtechnik AG

Che ruolo gioca la sicurezza nelle tecnologie per l'idrogeno?

La sicurezza è un elemento fondamentale nella tecnologia dell'idrogeno. L'intervallo di esplosività dell'idrogeno è molto ampio: le miscele con ossigeno o aria sono esplosive con concentrazioni volumetriche di idrogeno comprese tra il 4% e il 77%. Inoltre l'idrogeno ha un'energia di accensione estremamente bassa. Per minimizzare i rischi si adottano strategie di protezione su più livelli.

- 1. Protezione antideflagrante primaria: evita la formazione di miscele esplosive, ad es. tramite una separazione sicura di idrogeno e
- ossigeno negli elettrolizzatori. '
 Protezione antideflagrante secondaria: eliminazione di fonti di ignizione tramite sensori a sicurezza intrinseca con bassa energia elettrica.
 Protezione antideflagrante terziaria: misure di contenimento dei danni nel caso in cui si verifichi comunque un'ignizione.

I sensori di VEGA sono certificati secondo ATEX. IECEx e SIL e consentono un impiego sicuro in ambienti a rischio di esplosione e in funzioni

In che modo la digitalizzazione contribuisce alla sicurezza dei processi? I moderni sensori, oltre alla mera funzione di misura offrono funzioni supplementari digitali che contribuiscono alla sicurezza operativa. I sensori di VEGA dispongono di:

- Funzioni di autodiagnosi: monitoraggio permanente dello stato del sensore per l'individuazione tempestiva di anomalie.
- Trasmissione digitale dei dati: integrazione diretta in sistemi di Industria 4.0 tramite IO-Link e protocolli HART.
- Accesso remoto tramite Bluetooth: manutenzione e parametrizzazione a distanza di sicurezza.

Inoltre, il VEGA Inventory System consente un monitoraggio predittivo delle scorte, per evitare carenze di scorte e pianificare per tempo il

In che modo protegge VEGA i suoi strumenti dagli attacchi informatici?

Con la crescente digitalizzazione e interconnessione dei processi industriali, aumenta la vulnerabilità degli impianti di processo agli attacchi informatici. Anche gli strumenti di misura sono sempre più nel mirino degli hacker. Eventuali manipolazioni non solo mettono a rischio la sicurezza dei dati, ma rappresentano una grave minaccia per la sicurezza operativa. Per questo è essenziale proteggere efficacemente l'Operational Technology (OT), per salvaguardare il controllo della produzione e difendere dagli attacchi l'integrità dei sistemi di misura. VEGA affronta queste sfide con un ampio sistema di sicurezza integrato ad esempio nel VEGAPULS 6X. Questo sensore radar è conforme ai requisiti della IEC 62443-4-2 e offre una protezione affidabile contro la manipolazione dei dati, lo spionaggio e gli attacchi di tipo Denial-of-Service, grazie a un approccio di protezione multilivello (Defense in Depth). Tra le principali misure di sicurezza ci sono:

- trasmissioni di dati crittografate per garantire la protezione contro gli attacchi informatici
- autenticazione degli utenti per prevenire accessi non autorizzati
- verifica dell'integrità del firmware per garantire che vengano eseguiti solo aggiornamenti software autorizzati
- memoria eventi per la documentazione di eventuali tentativi di manipolazione

Un ulteriore elemento centrale della strategia di sicurezza di VEGA è il Product Security Incident Response Team (PSIRT) aziendale. Questo team interno di risposta agli incidenti di sicurezza dei prodotti monitora costantemente la situazione di sicurezza, sviluppa aggiornamenti preventivi e risponde rapidamente alle potenziali minacce. Combinando cyber security, sicurezza funzionale e meccanismi di difesa digitali, VEGA contribuisce a mantenere la sicurezza degli impianti di idrogeno anche in un mondo interconnesso.

Tel.: +41 44 952 40 00 info.ch@vega.com Barzloostr. 2 VFGA Messtechnik AG www.vega.com

Conclusioni Tecnologie sicure e precise per i processi dell'idrogeno

L'idrogeno pone gli strumenti di misura di fronte a sfide non indifferenti: dalle applicazioni in presenza pressioni elevate alla tecnologia criogenica e alla sicurezza antideflagrante. VEGA offre robusti sensori di pressione, strumenti di misura di livello e moderne soluzioni digitali per processi dell'idrogeno efficienti e sicuri. Con tecnologie innovative dei materiali, sistemi di compensazione avanzati e tool di analisi digitali, VEGA impone nuovi standard nella tecnologia dell'idrogeno. In questo modo, questo promettente vettore energetico può essere sfruttato in maniera ottimale e secondo i criteri di sicurezza, precisione ed efficienza.

Settori correlati

Tecnica di misura di livello e pressione per processi dell'idrogeno sicuri ed efficienti.

Prodotti

